論文の概要: How Far Are We From AGI
- arxiv url: http://arxiv.org/abs/2405.10313v1
- Date: Thu, 16 May 2024 17:59:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 13:23:28.314164
- Title: How Far Are We From AGI
- Title(参考訳): AGIからどこまで離れてる?
- Authors: Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, Jiaxuan You,
- Abstract要約: 人工知能(AI)の進化は、人間社会に大きな影響を与え、複数の分野において大きな進歩をもたらした。
しかし、AIに対する増大する要求は、AIの現在の提供の限界を強調し、人工知能(AGI)への動きを触媒している。
AGIは、人間の知能に匹敵する効率と有効性で、さまざまな現実世界のタスクを実行する能力で特徴付けられ、AI進化における最重要マイルストーンを反映している。
本稿では,AGIに近接する重要な課題と,その実現に必要な戦略について,広範な調査,議論,オリジナル視点を通じて考察する。
- 参考スコア(独自算出の注目度): 15.705756259264932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of artificial intelligence (AI) has profoundly impacted human society, driving significant advancements in multiple sectors. Yet, the escalating demands on AI have highlighted the limitations of AI's current offerings, catalyzing a movement towards Artificial General Intelligence (AGI). AGI, distinguished by its ability to execute diverse real-world tasks with efficiency and effectiveness comparable to human intelligence, reflects a paramount milestone in AI evolution. While existing works have summarized specific recent advancements of AI, they lack a comprehensive discussion of AGI's definitions, goals, and developmental trajectories. Different from existing survey papers, this paper delves into the pivotal questions of our proximity to AGI and the strategies necessary for its realization through extensive surveys, discussions, and original perspectives. We start by articulating the requisite capability frameworks for AGI, integrating the internal, interface, and system dimensions. As the realization of AGI requires more advanced capabilities and adherence to stringent constraints, we further discuss necessary AGI alignment technologies to harmonize these factors. Notably, we emphasize the importance of approaching AGI responsibly by first defining the key levels of AGI progression, followed by the evaluation framework that situates the status-quo, and finally giving our roadmap of how to reach the pinnacle of AGI. Moreover, to give tangible insights into the ubiquitous impact of the integration of AI, we outline existing challenges and potential pathways toward AGI in multiple domains. In sum, serving as a pioneering exploration into the current state and future trajectory of AGI, this paper aims to foster a collective comprehension and catalyze broader public discussions among researchers and practitioners on AGI.
- Abstract(参考訳): 人工知能(AI)の進化は、人間社会に大きな影響を与え、複数の分野において大きな進歩をもたらした。
しかし、AIに対する要求の増大により、AIの現在の提供の限界が強調され、人工知能(AGI)への動きが促進された。
AGIは、人間の知能に匹敵する効率と有効性で、さまざまな現実世界のタスクを実行する能力で特徴付けられ、AI進化における最重要マイルストーンを反映している。
既存の研究はAIの具体的な進歩を要約しているが、AIの定義、目標、発達軌道に関する包括的な議論は欠如している。
既存の調査論文とは違って,本論文では,AGIに近づいたことや,その実現に必要な戦略について,広範な調査,議論,オリジナルの観点から考察する。
まず、AGIに必要な機能フレームワークを明確にし、内部、インターフェース、システム次元を統合することから始めます。
AGIの実現には、より高度な能力と厳密な制約の遵守が必要であるため、これらの要因を調和させるために必要なAGIアライメント技術をさらに議論する。
特に、まずAGIの進行の重要レベルを定義し、続いて現状を定式化した評価フレームワークを作成し、最後にAGIの頂点に達する方法についてのロードマップを提示することで、AGIに責任を持ってアプローチすることの重要性を強調します。
さらに、AI統合のユビキタスな影響に関する明確な洞察を与えるため、複数のドメインにおけるAGIに対する既存の課題と潜在的な経路を概説する。
要約すると,本論文は,AGIの現状と今後の軌道の先駆的な探索として,AGIの総合的な理解を促進し,研究者や実践者の間でのより広範な公開議論を促進することを目的としている。
関連論文リスト
- Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI [129.08019405056262]
人工知能(Embodied AI)は、人工知能(AGI)の実現に不可欠である
MLMとWMは、その顕著な知覚、相互作用、推論能力のために、大きな注目を集めている。
本調査では,Embodied AIの最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-07-09T14:14:47Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
マルチモーダル人工知能(AI)アプローチは、教育的文脈における人工知能(AGI)の実現に向けた道を歩んでいる。
この研究は、認知フレームワーク、高度な知識表現、適応学習機構、多様なマルチモーダルデータソースの統合など、AGIの重要な側面を深く掘り下げている。
本稿は、AGI開発における今後の方向性と課題に関する洞察を提供する、教育におけるマルチモーダルAIの役割の意味についても論じる。
論文 参考訳(メタデータ) (2023-12-10T23:32:55Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
本稿では,人工知能(AGI)モデルとその前駆体の性能と動作を分類する枠組みを提案する。
このフレームワークは、AGIのパフォーマンス、一般性、自律性のレベルを導入し、モデルを比較し、リスクを評価し、AGIへの道筋に沿って進捗を測定する共通の言語を提供する。
論文 参考訳(メタデータ) (2023-11-04T17:44:58Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Concepts is All You Need: A More Direct Path to AGI [0.0]
20年ほど前にAGI(Artificial General Intelligence)という用語が発明されて以来、ほとんど進歩していない。
ここではアーキテクチャと開発計画を概説し、いくつかの予備的な結果とともに、完全な人間レベルAI(HLAI)/AGIへのより直接的なパスを提供します。
論文 参考訳(メタデータ) (2023-09-04T14:14:41Z) - AGI: Artificial General Intelligence for Education [41.45039606933712]
本稿では,人工知能(AGI)の重要な概念,能力,範囲,将来的な教育の可能性について概説する。
AGIは知的学習システム、教育評価、評価手順を大幅に改善することができる。
この論文は、AGIの能力が人間の感情や社会的相互作用を理解することに拡張されていることを強調している。
論文 参考訳(メタデータ) (2023-04-24T22:31:59Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。