論文の概要: A Reliability Theory of Compromise Decisions for Large-Scale Stochastic Programs
- arxiv url: http://arxiv.org/abs/2405.10414v1
- Date: Thu, 16 May 2024 19:33:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:33:08.632364
- Title: A Reliability Theory of Compromise Decisions for Large-Scale Stochastic Programs
- Title(参考訳): 大規模確率計画における妥協決定の信頼性理論
- Authors: Shuotao Diao, Suvrajeet Sen,
- Abstract要約: 本稿では,「妥協決定」プロセスによるプログラミングソリューションの信頼性について検討する。
真の最適決定の集合からサンプルインスタンスの「悲観的距離」の期待と分散を推定することにより、妥協決定の信頼性を定量化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic programming models can lead to very large-scale optimization problems for which it may be impossible to enumerate all possible scenarios. In such cases, one adopts a sampling-based solution methodology in which case the reliability of the resulting decisions may be suspect. For such instances, it is advisable to adopt methodologies that promote variance reduction. One such approach goes under a framework known as "compromise decision", which requires multiple replications of the solution procedure. This paper studies the reliability of stochastic programming solutions resulting from the "compromise decision" process. This process is characterized by minimizing an aggregation of objective function approximations across replications, presumably conducted in parallel. We refer to the post-parallel-processing problem as the problem of "compromise decision". We quantify the reliability of compromise decisions by estimating the expectation and variance of the "pessimistic distance" of sampled instances from the set of true optimal decisions. Such pessimistic distance is defined as an estimate of the largest possible distance of the solution of the sampled instance from the "true" optimal solution set. The Rademacher average of instances is used to bound the sample complexity of the compromise decision.
- Abstract(参考訳): 確率的プログラミングモデルは、可能なすべてのシナリオを列挙することが不可能な、非常に大規模な最適化問題につながる可能性がある。
そのような場合、サンプリングベースのソリューション手法を採用し、その結果の判断の信頼性を疑う可能性がある。
このような場合、分散還元を促進する手法を採用することが望ましい。
そのようなアプローチの1つは、ソリューション手順の複数のレプリケーションを必要とする、"Compromise decision"と呼ばれるフレームワークの下にある。
本稿では,「妥協決定」プロセスによる確率的プログラミングソリューションの信頼性について検討する。
このプロセスは、おそらく並列に行われるであろう複製全体にわたる目的関数近似の集約を最小化するのが特徴である。
並列処理後の問題を「妥協決定」問題と呼ぶ。
真の最適決定の集合からサンプルインスタンスの「悲観的距離」の期待と分散を推定することにより、妥協決定の信頼性を定量化する。
そのような悲観的距離は、「真の」最適解集合からサンプリングされたインスタンスの解の最も大きな可能な距離の見積もりとして定義される。
Rademacher平均のインスタンスは、妥協決定のサンプルの複雑さを束縛するために使用される。
関連論文リスト
- Online POMDP Planning with Anytime Deterministic Guarantees [11.157761902108692]
不確実性の下での計画は、部分的に観測可能なマルコフ決定プロセス(POMDP)を用いて数学的に定式化できる
POMDPの最適計画を見つけるには計算コストがかかり、小さなタスクにのみ適用可能である。
簡便な解と理論的に最適な解との決定論的関係を導出する。
論文 参考訳(メタデータ) (2023-10-03T04:40:38Z) - Margin theory for the scenario-based approach to robust optimization in
high dimension [0.0]
本稿では、ロバストな最適化のためのシナリオアプローチを扱う。
これは、問題の不確実性によって引き起こされる可能性のある無限個の制約のランダムサンプリングに依存する。
論文 参考訳(メタデータ) (2023-03-07T13:33:46Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - The Parametric Cost Function Approximation: A new approach for
multistage stochastic programming [4.847980206213335]
決定論的最適化モデルのパラメータ化バージョンは、プログラミングや動的プログラミングの複雑さを伴わずに不確実性を扱う効果的な方法であることを示す。
このアプローチは複雑な高次元状態変数を処理でき、シナリオツリーや値関数近似に関連する通常の近似を避けることができる。
論文 参考訳(メタデータ) (2022-01-01T23:25:09Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Bayesian preference elicitation for multiobjective combinatorial
optimization [12.96855751244076]
DM(Decision Maker)のノイズ応答に対処できる新しいインクリメンタルな選好推論手法を提案する。
DMの選好はパラメータが未知の集約関数で表され、その不確実性はパラメータ空間上の密度関数で表されると仮定する。
論文 参考訳(メタデータ) (2020-07-29T12:28:37Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
本稿では,操作を微分可能で局所的に一定ではない操作に変換する手法を提案する。
提案手法は摂動に依拠し,既存の解法とともに容易に利用することができる。
本稿では,この枠組みが,構造化予測において発達した損失の族とどのように結びつくかを示し,学習課題におけるそれらの使用に関する理論的保証を与える。
論文 参考訳(メタデータ) (2020-02-20T11:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。