論文の概要: Contestable AI needs Computational Argumentation
- arxiv url: http://arxiv.org/abs/2405.10729v2
- Date: Sat, 3 Aug 2024 23:06:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 20:48:25.356005
- Title: Contestable AI needs Computational Argumentation
- Title(参考訳): 難解なAIは計算処理を必要とする
- Authors: Francesco Leofante, Hamed Ayoobi, Adam Dejl, Gabriel Freedman, Deniz Gorur, Junqi Jiang, Guilherme Paulino-Passos, Antonio Rago, Anna Rapberger, Fabrizio Russo, Xiang Yin, Dekai Zhang, Francesca Toni,
- Abstract要約: 最先端のアプローチは、AIシステムが競合する必要性をほとんど無視する。
競合可能なAIには、動的(ヒューマンマシンおよび/またはマシンマシン)の説明可能性と意思決定プロセスが必要である、と我々は主張する。
- 参考スコア(独自算出の注目度): 15.15970495693702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI has become pervasive in recent years, but state-of-the-art approaches predominantly neglect the need for AI systems to be contestable. Instead, contestability is advocated by AI guidelines (e.g. by the OECD) and regulation of automated decision-making (e.g. GDPR). In this position paper we explore how contestability can be achieved computationally in and for AI. We argue that contestable AI requires dynamic (human-machine and/or machine-machine) explainability and decision-making processes, whereby machines can (i) interact with humans and/or other machines to progressively explain their outputs and/or their reasoning as well as assess grounds for contestation provided by these humans and/or other machines, and (ii) revise their decision-making processes to redress any issues successfully raised during contestation. Given that much of the current AI landscape is tailored to static AIs, the need to accommodate contestability will require a radical rethinking, that, we argue, computational argumentation is ideally suited to support.
- Abstract(参考訳): 近年、AIは広く普及しているが、最先端のアプローチはAIシステムが競合する必要性をほとんど無視している。
代わりに、競争性はAIガイドライン(OECDなど)と自動意思決定の規制(GDPRなど)によって主張される。
本稿では,AIにおいて,競争性をどのように計算的に達成できるかを考察する。
我々は、競争可能なAIには動的(人間機械および/または機械機械)の説明可能性と意思決定のプロセスが必要であり、機械が可能であると論じている。
一 人その他の機械と相互作用して、その出力及び/又は推論を段階的に説明し、また、これらの人間又は/又は他の機械が提供する競争の根拠を評価すること。
(二)争議中に提起された問題に対処するため、意思決定のプロセスを見直しる。
現在のAIのランドスケープが静的AIに合わせたものであることを考えると、競争性に適合する必要性には、急進的な再考が必要であり、計算の議論はサポートするのに理想的だ、と私たちは主張する。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Artificial intelligence and the transformation of higher education
institutions [0.0]
本稿では、典型的なHEIにおけるAI変換の因果フィードバック機構をマッピングするための因果ループ図(CLD)を開発する。
私たちのモデルは、AI変革を駆動する力と、典型的なHEIにおける価値創造に対するAI変革の結果について説明します。
この記事では、学生の学習、研究、管理を改善するために、HEIがAIに投資する方法について、いくつかの強化とバランスの取れたフィードバックループを特定し、分析する。
論文 参考訳(メタデータ) (2024-02-13T00:36:10Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Relational Artificial Intelligence [5.5586788751870175]
AIは伝統的に合理的な意思決定と結びついているが、すべての面においてAIの社会的影響を理解し、形作るためには、リレーショナルな視点が必要である。
AIに対する合理的なアプローチでは、計算アルゴリズムが人間の介入から独立して意思決定を推進し、バイアスと排除をもたらすことが示されている。
物事のリレーショナルな性質に焦点を当てたリレーショナルアプローチは、AIの倫理的、法的、社会的、文化的、環境的な影響を扱うために必要である。
論文 参考訳(メタデータ) (2022-02-04T15:29:57Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - The human-AI relationship in decision-making: AI explanation to support
people on justifying their decisions [4.169915659794568]
人々は、AIがどのように機能するか、そしてそのシステムとの関係を構築するために、その成果をもっと意識する必要があります。
意思決定のシナリオでは、人々はAIがどのように機能するか、そしてそのシステムとの関係を構築する結果についてもっと意識する必要があります。
論文 参考訳(メタデータ) (2021-02-10T14:28:34Z) - Who is this Explanation for? Human Intelligence and Knowledge Graphs for
eXplainable AI [0.0]
我々は、eXplainable AIにヒューマンインテリジェンスがもたらす貢献に焦点を当てる。
我々は、知識表現と推論、社会科学、人間計算、人間-機械協調研究とのより優れた相互作用を求めている。
論文 参考訳(メタデータ) (2020-05-27T10:47:15Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
論文 参考訳(メタデータ) (2019-12-29T17:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。