論文の概要: A Systematic Review and Meta-Analysis on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2405.11008v1
- Date: Fri, 17 May 2024 11:09:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:46:29.543851
- Title: A Systematic Review and Meta-Analysis on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence
- Title(参考訳): 人工知能を用いた睡眠ステージ分類と睡眠障害検出に関するシステムレビューとメタ分析
- Authors: Tayab Uddin Wara, Ababil Hossain Fahad, Adri Shankar Das, Md. Mehedi Hasan Shawon,
- Abstract要約: 本研究は,近年の文献を包括的,体系的,メタ分析して,睡眠研究における様々なアプローチとその成果を分析することを目的としている。
脳波は、睡眠ステージングや障害研究に最もよく用いられる身体パラメータである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sleep is vital for people's physical and mental health, and sound sleep can help them focus on daily activities. Therefore, a sleep study that includes sleep patterns and disorders is crucial to enhancing our knowledge about individuals' health status. The findings on sleep stages and sleep disorders relied on polysomnography and self-report measures, and then the study went through clinical assessments by expert physicians. However, the evaluation process of sleep stage classification and sleep disorder has become more convenient with artificial intelligence applications and numerous investigations focusing on various datasets with advanced algorithms and techniques that offer improved computational ease and accuracy. This study aims to provide a comprehensive, systematic review and meta-analysis of the recent literature to analyze the different approaches and their outcomes in sleep studies, which includes works on sleep stages classification and sleep disorder detection using AI. In this review, 183 articles were initially selected from different journals, among which 80 records were enlisted for explicit review, ranging from 2016 to 2023. Brain waves were the most commonly employed body parameters for sleep staging and disorder studies. The convolutional neural network, the most widely used of the 34 distinct artificial intelligence models, comprised 27%. The other models included the long short-term memory, support vector machine, random forest, and recurrent neural network, which consisted of 11%, 6%, 6%, and 5% sequentially. For performance metrics, accuracy was widely used for a maximum of 83.75% of the cases, the F1 score of 45%, Kappa of 36.25%, Sensitivity of 31.25%, and Specificity of 30% of cases, along with the other metrics. This article would help physicians and researchers get the gist of AI's contribution to sleep studies and the feasibility of their intended work.
- Abstract(参考訳): 睡眠は人々の身体的および精神的な健康にとって不可欠であり、音波睡眠は日々の活動に集中するのに有効である。
そのため、睡眠パターンや障害を含む睡眠研究は、個人の健康状態に関する知識を高めるために不可欠である。
睡眠段階と睡眠障害の所見は、多ソノグラフィーと自己申告尺度に依存し、その後、専門医による臨床評価を経た。
しかし、睡眠段階分類と睡眠障害の評価プロセスは、人工知能の応用や、計算の容易さと正確性を向上させる高度なアルゴリズムと技術を用いて、様々なデータセットに焦点を当てた多くの調査が実施されている。
本研究の目的は,近年の文献を包括的,体系的,メタ分析して,AIを用いた睡眠段階分類と睡眠障害検出に関する研究を含む睡眠研究における様々なアプローチとその成果を分析することである。
このレビューでは、最初183の論文が異なる雑誌から選ばれ、そのうち80の論文が2016年から2023年まで、明示的なレビューのために登録された。
脳波は、睡眠ステージングや障害研究に最もよく用いられる身体パラメータである。
畳み込みニューラルネットワークは34の異なる人工知能モデルの中で最も広く使われているもので、27%であった。
他のモデルには、長い短期記憶、サポートベクターマシン、ランダムフォレスト、リカレントニューラルネットワークが含まれており、11%、6%、6%、5%が順次構成されている。
パフォーマンス指標では、最大83.75%のケース、F1スコアの45%、Kappaスコアの36.25%、感度の31.25%、およびその他の指標の30%のケースで精度が広く使用された。
この記事では、医師や研究者が、睡眠研究へのAIの貢献と、彼らの意図した仕事の実現可能性を得るのに役立つだろう。
関連論文リスト
- What Radio Waves Tell Us about Sleep [34.690382091650314]
本研究では、睡眠中の人から反射される電波からの睡眠と夜間呼吸を受動的にモニタリングする高度な機械学習アルゴリズムを開発した。
睡眠時無呼吸(AUROC=0.88)を検知し,睡眠時無呼吸を検知した。
このモデルは、睡眠段階と、神経、精神医学、循環器、免疫疾患を含む様々な疾患の間の情報的相互作用を明らかにする。
論文 参考訳(メタデータ) (2024-05-20T02:41:21Z) - Insomnia Identification via Electroencephalography [0.0]
全世界で推定5000万人が不眠症に罹患していると考えられている。
本研究では、深層学習を用いて不眠症患者を自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2024-02-09T08:59:37Z) - SI-SD: Sleep Interpreter through awake-guided cross-subject Semantic Decoding [5.283755248013948]
我々は、新しい認知神経科学実験を設計し、覚醒と睡眠の間に134人の被験者から、包括的、十分に注意された脳波(EEG)データセットを収集した。
我々は、覚醒と睡眠の間のニューラル潜伏シーケンスの位置ワイドアライメントにより、睡眠意味のデコーディングを強化するSI-SDを開発した。
論文 参考訳(メタデータ) (2023-09-28T14:06:34Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
先行学習を失うことなく、新しいタスクやスキルを連続して学習することは、人工ニューラルネットワークと生物学的ニューラルネットワークの両方にとって、計算上の課題である。
本稿では,3つの異なる睡眠成分のモデル化が,人工ニューラルネットワークの連続学習にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2022-09-09T13:45:27Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
ディープラーニングを用いた脳MRIにおける教師なし異常検出(UAD)は有望な結果を示した。
年齢情報を考慮した3次元脳MRIにおけるUDAの深層学習を提案する。
そこで本研究では,マルチタスク年齢予測を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T09:39:52Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Sleep syndromes onset detection based on automatic sleep staging
algorithm [0.0]
高速フーリエ変換は、脳波記録の30秒間のエポックに応用され、局所的な時間周波数情報を提供する。
深層畳み込みLSTMニューラルネットワークは睡眠段階分類のために訓練されている。
コード評価の結果、精度は86.43、精度は77.76、リコールは93,32, F1スコアは89.12、最終誤差は0.09だった。
論文 参考訳(メタデータ) (2021-07-07T15:38:47Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
ポリソムノグラムで睡眠イベントを共同検出する,単一のディープニューラルネットワークアーキテクチャを設計した。
モデルの性能は,F1,精度,リコールスコア,および指標値と臨床値との相関で定量化した。
論文 参考訳(メタデータ) (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - Classifying sleep-wake stages through recurrent neural networks using
pulse oximetry signals [0.0]
自律神経系の調節は睡眠段階によって変化する。
我々はこれらの変化を利用して、覚醒または睡眠中の睡眠段階をパルスオキシメータ信号を用いて分類する。
心拍数と末梢酸素飽和信号にリカレントニューラルネットワークを適用し,30秒毎に睡眠ステージを分類した。
論文 参考訳(メタデータ) (2020-08-07T21:43:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。