論文の概要: Outlier-Robust Long-Term Robotic Mapping Leveraging Ground Segmentation
- arxiv url: http://arxiv.org/abs/2405.11176v1
- Date: Sat, 18 May 2024 04:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:07:29.608912
- Title: Outlier-Robust Long-Term Robotic Mapping Leveraging Ground Segmentation
- Title(参考訳): グラウンドセグメンテーションを活用したアウトリア・ローバスト長期ロボットマッピング
- Authors: Hyungtae Lim,
- Abstract要約: 箱から出られる堅牢な長期ロボットマッピングシステムを提案する。
特に,特徴マッチング結果における粗大な外乱の存在を克服するグラウンドセグメンテーションを用いた外乱登録を提案する。
最後に、環境中の移動物体の存在を処理できる(iv)インスタンス対応の静的マップ構築を提案する。
- 参考スコア(独自算出の注目度): 1.7948767405202701
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the remarkable advancements in deep learning-based perception technologies and simultaneous localization and mapping~(SLAM), one can face the failure of these approaches when robots encounter scenarios outside their modeled experiences~(here, the term \textit{modeling} encompasses both conventional pattern finding and data-driven approaches). In particular, because learning-based methods are prone to catastrophic failure when operated in untrained scenes, there is still a demand for conventional yet robust approaches that work out of the box in diverse scenarios, such as real-world robotic services and SLAM competitions. In addition, the dynamic nature of real-world environments, characterized by changing surroundings over time and the presence of moving objects, leads to undesirable data points that hinder a robot from localization and path planning. Consequently, methodologies that enable long-term map management, such as multi-session SLAM and static map building, become essential. Therefore, to achieve a robust long-term robotic mapping system that can work out of the box, first, I propose (i)~fast and robust ground segmentation to reject the ground points, which are featureless and thus not helpful for localization and mapping. Then, by employing the concept of graduated non-convexity~(GNC), I propose (ii)~outlier-robust registration with ground segmentation that overcomes the presence of gross outliers within the feature matching results, and (iii)~hierarchical multi-session SLAM that not only uses our proposed GNC-based registration but also employs a GNC solver to be robust against outlier loop candidates. Finally, I propose (iv)~instance-aware static map building that can handle the presence of moving objects in the environment based on the observation that most moving objects in urban environments are inevitably in contact with the ground.
- Abstract(参考訳): 深層学習に基づく知覚技術と同時局所化とマッピング(SLAM)の顕著な進歩にもかかわらず、ロボットがモデル化された経験の外でシナリオに遭遇した場合、これらのアプローチの失敗に直面することができる(ここでは、‘textit{modeling’という用語は、従来のパターン発見とデータ駆動のアプローチの両方を包含する)。
特に、学習ベースの手法は、訓練されていない場面で運用する際に破滅的な失敗をする傾向があるため、現実世界のロボティクスサービスやSLAMコンペティションなど、さまざまなシナリオにおいて、最初から機能する従来の堅牢なアプローチには、依然として需要がある。
さらに、実世界の環境の動的な性質は、時間とともに環境が変化し、動く物体の存在が特徴であり、ロボットが位置や経路計画から妨げられるような望ましくないデータポイントにつながります。
そのため,マルチセッションSLAMや静的マップ構築など,長期マップ管理を可能にする手法が不可欠である。
そこで,まず最初に提案する,頑健な長期ロボットマッピングシステムを実現する。
(i)~高速で頑健な接地セグメント化は、特徴が無く、ローカライゼーションや写像には役に立たない基底点を拒絶する。
そして、卒業した非凸性~(GNC)の概念を取り入れて、提案する。
(ii)-特徴整合結果における総外乱の存在を克服する接地区分付き外乱登録
(iii)〜階層型マルチセッションSLAMは,提案したGNCベース登録だけでなく,GNCソルバを用いて外乱ループ候補に対して堅牢である。
最後に提案します
(4) 都市環境における移動物体のほとんどを地中と接触させることにより, 環境中における移動物体の存在を把握できる静地図構築法について検討した。
関連論文リスト
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Semi-Supervised Active Learning for Semantic Segmentation in Unknown
Environments Using Informative Path Planning [27.460481202195012]
ロボットの視力を改善するために、自己監督的で完全に教師された能動学習手法が出現した。
セマンティックセグメンテーションの半教師付き能動学習のための計画法を提案する。
我々は、モデル不確実性の高い未探索空間のフロンティアに向けて導かれた適応地図ベースのプランナーを活用する。
論文 参考訳(メタデータ) (2023-12-07T16:16:47Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Robot Active Neural Sensing and Planning in Unknown Cluttered
Environments [0.0]
未知の乱雑な環境でのアクティブなセンシングと計画は、ホームサービス、探索と救助、狭い通行検査、医療支援を提供するロボットにとって、オープンな課題である。
本研究は,ロボットマニピュレータの動力学的に実現可能な視点列を手動カメラで生成し,基礎環境の再構築に必要な観測回数を最小化するための能動型ニューラルセンシング手法を提案する。
我々のフレームワークは視覚的RGBD観測を積極的に収集し、それらをシーン表現に集約し、環境との不要なロボットの相互作用を避けるためにオブジェクト形状推論を行う。
論文 参考訳(メタデータ) (2022-08-23T16:56:54Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing [1.3678064890824186]
HARPS(Human Assisted Robotic Planning and Sensing)フレームワークは、ロボットチームにおけるアクティブなセマンティックセンシングと計画のためのフレームワークである。
このアプローチにより、人間が不規則にモデル構造を強制し、不確実な環境で意味的なソフトデータの範囲を拡張することができる。
大規模部分構造環境におけるUAV対応ターゲット探索アプリケーションのシミュレーションは、時間と信念状態の推定において著しく改善されている。
論文 参考訳(メタデータ) (2021-10-20T00:41:57Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - DARE-SLAM: Degeneracy-Aware and Resilient Loop Closing in
Perceptually-Degraded Environments [4.34118539186713]
自律探査における重要な要件は、未知の環境の正確で一貫したマップを構築することである。
位置認識を改善し,3次元位置の曖昧さを解消するために,デジェネリアシー・アウェアとドリフト・レジリエント・ループ・クロージング法を提案する。
論文 参考訳(メタデータ) (2021-02-09T20:37:17Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。