論文の概要: Sociotechnical Implications of Generative Artificial Intelligence for Information Access
- arxiv url: http://arxiv.org/abs/2405.11612v1
- Date: Sun, 19 May 2024 17:04:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 15:02:50.803817
- Title: Sociotechnical Implications of Generative Artificial Intelligence for Information Access
- Title(参考訳): 情報アクセスのための生成人工知能の社会学的意味
- Authors: Bhaskar Mitra, Henriette Cramer, Olya Gurevich,
- Abstract要約: 生成AI技術は、情報にアクセスし、既存の情報検索システムの有効性を改善する新しい方法を可能にする。
本稿では、情報アクセスの文脈において、生成AIを採用する際のシステム的結果とリスクについて概説する。
- 参考スコア(独自算出の注目度): 4.3867169221012645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust access to trustworthy information is a critical need for society with implications for knowledge production, public health education, and promoting informed citizenry in democratic societies. Generative AI technologies may enable new ways to access information and improve effectiveness of existing information retrieval systems but we are only starting to understand and grapple with their long-term social implications. In this chapter, we present an overview of some of the systemic consequences and risks of employing generative AI in the context of information access. We also provide recommendations for evaluation and mitigation, and discuss challenges for future research.
- Abstract(参考訳): 信頼できる情報へのロバストなアクセスは、知識生産、公衆衛生教育、民主社会における情報市民の促進といった社会にとって重要な必要性である。
生成的AI技術は、情報にアクセスし、既存の情報検索システムの有効性を改善する新しい方法を可能にするかもしれませんが、私たちはその長期的な社会的意味を理解し、理解し始めています。
本章では、情報アクセスの文脈において、生成AIを採用する際のシステム的結果とリスクについて概説する。
また,評価と緩和の勧告も提供し,今後の研究課題について論じる。
関連論文リスト
- Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
本稿では,エッジインテリジェンス(EI)と社会学習(SL)の統合に関する文献レビューの結果について述べる。
SLは、エージェントの協調能力と集団知性を増幅することを目的とした、社会的原則と行動に基づく学習パラダイムである。
ソーシャル化アーキテクチャ、ソーシャル化トレーニング、ソーシャル化推論の3つの統合コンポーネントについて詳しく検討し、その強みと弱点を分析した。
論文 参考訳(メタデータ) (2024-04-20T11:07:29Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote
Sensing [52.110707276938]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出のための主要なモデリングパラダイムとなっている。
我々は、リモートセンシングにおいて、説明可能なAIがどのように使われているかを示す重要なトレンドを特定するために、体系的なレビューを行う。
私たちは、新しい説明可能なAIアプローチと、特定のリモートセンシング課題に対処する新たな方向性に光を当てました。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Private Knowledge Sharing in Distributed Learning: A Survey [50.51431815732716]
人工知能の台頭は多くの産業に革命をもたらし、社会の働き方を変えた。
異なるエンティティが分散または所有する学習プロセスにおいて、情報を活用することが不可欠である。
現代のデータ駆動サービスは、分散知識エンティティを結果に統合するために開発されています。
論文 参考訳(メタデータ) (2024-02-08T07:18:23Z) - A Framework for Exploring the Consequences of AI-Mediated Enterprise Knowledge Access and Identifying Risks to Workers [3.4568218861862556]
本稿では、AIを利用した企業知識アクセスシステムから労働者のリスクを特定するためのConsequence-Mechanism-Riskフレームワークを提案する。
我々は、労働者に対するリスクを詳述した幅広い文献を執筆し、労働者の価値、力、幸福に対するリスクを分類した。
今後の作業は、この枠組みを他の技術システムに適用し、労働者や他のグループの保護を促進する可能性がある。
論文 参考訳(メタデータ) (2023-12-08T17:05:40Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
ディープフェイクとm/disinformationの拡散は、世界中の情報エコシステムの整合性に対する恐ろしい脅威として現れている。
我々は,大規模モデル(LM-based GenAI)をベースとした生成AIの仕組みを強調した。
我々は、高度な検出アルゴリズム、クロスプラットフォームのコラボレーション、ポリシー駆動のイニシアチブを組み合わせた統合フレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-29T06:47:58Z) - Requirements for Explainability and Acceptance of Artificial
Intelligence in Collaborative Work [0.0]
本稿では,AIの説明可能性と受容の要件について考察する。
その結果,2つの主要なグループが,モデルの内部操作に関する情報を必要とする開発者であることが示唆された。
AIシステムの受容は、システムの機能や性能、プライバシ、倫理的考慮事項に関する情報に依存する。
論文 参考訳(メタデータ) (2023-06-27T11:36:07Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
ビッグデータ技術と人工知能(AI)応用の爆発的な成長は、情報ファセットの普及に繋がった。
等角性や正確性などの情報フェートは、情報に対する人間の認識を支配的かつ著しく左右する。
認知の限界を克服するために情報表現を適応できる人工知能技術が必要であることを示唆する。
論文 参考訳(メタデータ) (2022-04-25T02:47:25Z) - Machines and Influence [0.0]
本稿では、AI能力を調査し、この問題に対処する。
本稿では、AIの対角的応用をフレーム化し、ナビゲートするマシンインフェクトのマトリックスを紹介する。
情報システムのより良い規制と管理は、AIのリスクを最適に相殺することを提案する。
論文 参考訳(メタデータ) (2021-11-26T08:58:09Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
人中心の観点から、AIが社会に与える影響を探求する上で重要なトピックとなっている。
市民科学におけるこれまでの研究は、AIを使って研究に大衆を巻き込む方法を特定してきた。
本稿では,コミュニティ市民科学にAIを適用する上での課題について論じる。
論文 参考訳(メタデータ) (2021-10-05T12:51:11Z) - Advanced Machine Learning Techniques for Fake News (Online
Disinformation) Detection: A Systematic Mapping Study [1.7121012334286438]
本稿では,情報戦争におけるフェイクニュースの歴史的展望と役割について述べる。
専門家の業績にのみ基づいたソリューションが分析される。
この研究の主な目的は、偽ニュースの検出における知識の現状を分析することである。
論文 参考訳(メタデータ) (2020-12-28T13:07:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。