Strategy-Proof Auctions through Conformal Prediction
- URL: http://arxiv.org/abs/2405.12016v3
- Date: Sun, 7 Jul 2024 14:48:38 GMT
- Title: Strategy-Proof Auctions through Conformal Prediction
- Authors: Roy Maor Lotan, Inbal Talgam-Cohen, Yaniv Romano,
- Abstract summary: We introduce a novel approach to achieve strategy-proofness with rigorous statistical guarantees.
The key novelties of our method are: (i) the formulation of a regret prediction model, used to quantify at test time violations of strategy-proofness; and (ii) an auction acceptance rule that leverages the predicted regret to ensure that for a new auction, the data-driven mechanism meets the strategy-proofness requirement with high probability.
- Score: 19.750369749595734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Auctions are key for maximizing sellers' revenue and ensuring truthful bidding among buyers. Recently, an approach known as differentiable economics based on deep learning shows promise in learning optimal auction mechanisms for multiple items and participants. However, this approach has no guarantee of strategy-proofness at test time. Strategy-proofness is crucial as it ensures that buyers are incentivized to bid their true valuations, leading to optimal and fair auction outcomes without the risk of manipulation. Building on conformal prediction, we introduce a novel approach to achieve strategy-proofness with rigorous statistical guarantees. The key novelties of our method are: (i) the formulation of a regret prediction model, used to quantify at test time violations of strategy-proofness; and (ii) an auction acceptance rule that leverages the predicted regret to ensure that for a new auction, the data-driven mechanism meets the strategy-proofness requirement with high probability (e.g., 99\%). Numerical experiments demonstrate the necessity for rigorous guarantees, the validity of our theoretical results, and the applicability of our proposed method.
Related papers
- Learning to Bid in Non-Stationary Repeated First-Price Auctions [20.933903777434086]
First-price auctions have gained significant traction in digital advertising markets.
determining an optimal bidding strategy in first-price auctions is more complex.
We introduce two metrics to quantify the regularity of the bidding sequence.
arXiv Detail & Related papers (2025-01-23T03:53:27Z) - Strategic Conformal Prediction [0.66567375919026]
When a machine learning model is deployed, its predictions can alter its environment, as better informed agents strategize to suit their own interests.
We propose a new framework, Strategic Conformal Prediction, which is capable of robust uncertainty quantification in such a setting.
arXiv Detail & Related papers (2024-11-03T15:06:05Z) - Conformal Counterfactual Inference under Hidden Confounding [19.190396053530417]
Predicting potential outcomes along with its uncertainty in a counterfactual world poses the foundamental challenge in causal inference.
Existing methods that construct confidence intervals for counterfactuals either rely on the assumption of strong ignorability.
We propose a novel approach based on transductive weighted conformal prediction, which provides confidence intervals for counterfactual outcomes with marginal converage guarantees.
arXiv Detail & Related papers (2024-05-20T21:43:43Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - Mimicking Better by Matching the Approximate Action Distribution [48.95048003354255]
We introduce MAAD, a novel, sample-efficient on-policy algorithm for Imitation Learning from Observations.
We show that it requires considerable fewer interactions to achieve expert performance, outperforming current state-of-the-art on-policy methods.
arXiv Detail & Related papers (2023-06-16T12:43:47Z) - Robust multi-item auction design using statistical learning: Overcoming
uncertainty in bidders' types distributions [6.5920927560926295]
Our proposed approach utilizes nonparametric density estimation to accurately estimate bidders' types from historical bids.
To further enhance efficiency of our mechanism, we introduce two novel strategies for query reduction.
Simulation experiments conducted on both small-scale and large-scale data demonstrate that our mechanism consistently outperforms existing methods in terms of revenue design and query reduction.
arXiv Detail & Related papers (2023-02-02T08:32:55Z) - Adaptive Risk-Aware Bidding with Budget Constraint in Display
Advertising [47.14651340748015]
We propose a novel adaptive risk-aware bidding algorithm with budget constraint via reinforcement learning.
We theoretically unveil the intrinsic relation between the uncertainty and the risk tendency based on value at risk (VaR)
arXiv Detail & Related papers (2022-12-06T18:50:09Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
Conformal off-policy prediction can output reliable predictive intervals for the outcome under a new target policy.
We provide theoretical finite-sample guarantees without making any additional assumptions beyond the standard contextual bandit setup.
arXiv Detail & Related papers (2022-06-09T10:39:33Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Multi-Stage Decentralized Matching Markets: Uncertain Preferences and
Strategic Behaviors [91.3755431537592]
This article develops a framework for learning optimal strategies in real-world matching markets.
We show that there exists a welfare-versus-fairness trade-off that is characterized by the uncertainty level of acceptance.
We prove that participants can be better off with multi-stage matching compared to single-stage matching.
arXiv Detail & Related papers (2021-02-13T19:25:52Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
We study the problem of decision-making in the setting of a scarcity of shared resources when the preferences of agents are unknown a priori.
Our approach is based on the representation of preferences in a reproducing kernel Hilbert space.
We derive optimal strategies that maximize agents' expected payoffs.
arXiv Detail & Related papers (2020-10-29T03:08:22Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning.
We show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.
arXiv Detail & Related papers (2020-10-22T12:39:11Z) - A Generic Methodology for the Statistically Uniform & Comparable
Evaluation of Automated Trading Platform Components [2.28438857884398]
The proposed methodology is showcased on two automated trading platform components.
Namely, price levels, a well-known trading pattern, and a novel 2-step feature extraction method.
The main hypothesis was formulated to evaluate whether the selected trading pattern is suitable for use in the machine learning setting.
arXiv Detail & Related papers (2020-09-21T16:17:42Z) - Certifying Strategyproof Auction Networks [53.37051312298459]
We focus on the RegretNet architecture, which can represent auctions with arbitrary numbers of items and participants.
We propose ways to explicitly verify strategyproofness under a particular valuation profile using techniques from the neural network verification literature.
arXiv Detail & Related papers (2020-06-15T20:22:48Z) - Optimal Bidding Strategy without Exploration in Real-time Bidding [14.035270361462576]
maximizing utility with a budget constraint is the primary goal for advertisers in real-time bidding (RTB) systems.
Previous works ignore the losing auctions to alleviate the difficulty with censored states.
We propose a novel practical framework using the maximum entropy principle to imitate the behavior of the true distribution observed in real-time traffic.
arXiv Detail & Related papers (2020-03-31T20:43:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.