論文の概要: CoR-GS: Sparse-View 3D Gaussian Splatting via Co-Regularization
- arxiv url: http://arxiv.org/abs/2405.12110v2
- Date: Thu, 11 Jul 2024 17:50:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 22:37:59.556255
- Title: CoR-GS: Sparse-View 3D Gaussian Splatting via Co-Regularization
- Title(参考訳): CoR-GS: Sparse-View 3D Gaussian Splatting by Co-Regularization
- Authors: Jiawei Zhang, Jiahe Li, Xiaohan Yu, Lei Huang, Lin Gu, Jin Zheng, Xiao Bai,
- Abstract要約: 3Dガウススティング(3DGS)は、シーンを表現するために3Dガウスアンからなる放射場を生成する。
微妙なトレーニングビューでは、3DGSはオーバーフィッティングに苦しめられ、レンダリングに悪影響を及ぼす。
本稿では、スパースビュー3DGSを改善するための新しい協調正規化視点を提案する。
- 参考スコア(独自算出の注目度): 18.812931129987515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) creates a radiance field consisting of 3D Gaussians to represent a scene. With sparse training views, 3DGS easily suffers from overfitting, negatively impacting rendering. This paper introduces a new co-regularization perspective for improving sparse-view 3DGS. When training two 3D Gaussian radiance fields, we observe that the two radiance fields exhibit point disagreement and rendering disagreement that can unsupervisedly predict reconstruction quality, stemming from the randomness of densification implementation. We further quantify the two disagreements and demonstrate the negative correlation between them and accurate reconstruction, which allows us to identify inaccurate reconstruction without accessing ground-truth information. Based on the study, we propose CoR-GS, which identifies and suppresses inaccurate reconstruction based on the two disagreements: (1) Co-pruning considers Gaussians that exhibit high point disagreement in inaccurate positions and prunes them. (2) Pseudo-view co-regularization considers pixels that exhibit high rendering disagreement are inaccurate and suppress the disagreement. Results on LLFF, Mip-NeRF360, DTU, and Blender demonstrate that CoR-GS effectively regularizes the scene geometry, reconstructs the compact representations, and achieves state-of-the-art novel view synthesis quality under sparse training views.
- Abstract(参考訳): 3Dガウススティング(3DGS)は、シーンを表現するために3Dガウスアンからなる放射場を生成する。
微妙なトレーニングビューでは、3DGSは過度にフィットし、レンダリングに悪影響を及ぼす。
本稿では、スパースビュー3DGSを改善するための新しい協調正規化視点を提案する。
2つの3次元ガウス放射場を訓練すると、2つの放射場は、密度化のランダム性に起因して、教師なしで再現品質を予測できる点不一致とレンダリング不一致を示すことが観察される。
さらに,2つの相違点を定量化し,両者の負の相関関係と正確な再現性を示す。
本研究では,(1)コ・プルーニングは,不正確な位置において高い点の不一致を示すガウスを考慮し,その不正確な位置において不正確な復元を抑えるCoR-GSを提案する。
2) Pseudo-view co-regularization では,高いレンダリング不一致を示す画素は不正確であり,不一致を抑制する。
LLFF, Mip-NeRF360, DTU, Blenderの結果, CoR-GSはシーン形状を効果的に調整し, コンパクトな表現を再構築し, スパーストレーニングビュー下での最先端のノベルビュー合成品質を実現することを示した。
関連論文リスト
- PEP-GS: Perceptually-Enhanced Precise Structured 3D Gaussians for View-Adaptive Rendering [3.285531771049763]
ビューアダプティブレンダリングのための構造化3次元ガウスの最近の進歩は、ニューラルシーン表現において有望な結果を示している。
PEP-GSは3つの重要な革新を通じて構造化された3次元ガウシアンを強化する新しいフレームワークである。
複数のデータセットにわたる包括的な評価は、現在の最先端の手法と比較して、これらの改善が特に困難なシナリオで顕著であることを示している。
論文 参考訳(メタデータ) (2024-11-08T17:42:02Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplatは、多視点画像から3Dガウスアンによってパラメータ化された3Dシーンを再構成できるフィードフォワードモデルである。
提案手法は,推定時にリアルタイムな3次元ガウス再構成を実現する。
この研究は、ポーズフリーの一般化可能な3次元再構成において大きな進歩をもたらし、実世界のシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting(3DGS)は、高品質な3D再構成によるリアルタイムレンダリングが可能な有望な技術として登場した。
その可能性にもかかわらず、3DGSは針のようなアーティファクト、準最適ジオメトリー、不正確な正常など、課題に直面している。
正規化として有効なランクを導入し、ガウスの構造を制約する。
論文 参考訳(メタデータ) (2024-06-17T15:51:59Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。