論文の概要: Open-Source Assessments of AI Capabilities: The Proliferation of AI Analysis Tools, Replicating Competitor Models, and the Zhousidun Dataset
- arxiv url: http://arxiv.org/abs/2405.12167v3
- Date: Fri, 24 May 2024 19:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 03:18:40.864763
- Title: Open-Source Assessments of AI Capabilities: The Proliferation of AI Analysis Tools, Replicating Competitor Models, and the Zhousidun Dataset
- Title(参考訳): AI能力のオープンソースアセスメント:AI分析ツールの普及、競合モデルのレプリケーション、Zhousidunデータセット
- Authors: Ritwik Gupta, Leah Walker, Eli Glickman, Raine Koizumi, Sarthak Bhatnagar, Andrew W. Reddie,
- Abstract要約: 人工知能の軍事能力への統合は、世界中の主要な軍事力の標準となっている。
本稿では、Zhousidunデータセットの詳細な検証を通して、軍用AIモデルを分析するためのオープンソースの方法論を実証する。
- 参考スコア(独自算出の注目度): 0.4864598981593653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of artificial intelligence (AI) into military capabilities has become a norm for major military power across the globe. Understanding how these AI models operate is essential for maintaining strategic advantages and ensuring security. This paper demonstrates an open-source methodology for analyzing military AI models through a detailed examination of the Zhousidun dataset, a Chinese-originated dataset that exhaustively labels critical components on American and Allied destroyers. By demonstrating the replication of a state-of-the-art computer vision model on this dataset, we illustrate how open-source tools can be leveraged to assess and understand key military AI capabilities. This methodology offers a robust framework for evaluating the performance and potential of AI-enabled military capabilities, thus enhancing the accuracy and reliability of strategic assessments.
- Abstract(参考訳): 人工知能(AI)の軍事能力への統合は、世界中の主要な軍事力の標準となっている。
これらのAIモデルがどのように機能するかを理解することは、戦略的アドバンテージの維持とセキュリティの確保に不可欠である。
本稿は、アメリカと連合国の駆逐艦に重要な部品を徹底的にラベル付けした中国指向のデータセットであるZhousidunデータセットの詳細な検証を通して、軍事AIモデルを分析するためのオープンソース手法を実証する。
このデータセット上で、最先端のコンピュータビジョンモデルのレプリケーションを実演することで、オープンソースツールをどのように活用して、重要な軍事AI機能を評価し、理解することができるかを説明します。
この方法論は、AI対応軍事能力の性能と可能性を評価するための堅牢なフレームワークを提供し、戦略評価の正確性と信頼性を高める。
関連論文リスト
- The GPT Dilemma: Foundation Models and the Shadow of Dual-Use [0.0]
本稿では、基礎モデルの二重利用課題と、国際安全保障に影響を及ぼすリスクについて検討する。
本稿では,基礎モデルの開発サイクルにおいて,モデル入力,機能,システム利用事例,システム展開の4つの重要な要因を分析した。
本稿では、中距離原子力軍(INF)条約をケーススタディとして、関連するリスクを軽減するためのいくつかの戦略を提案する。
論文 参考訳(メタデータ) (2024-07-29T22:36:27Z) - Cloud-based XAI Services for Assessing Open Repository Models Under Adversarial Attacks [7.500941533148728]
計算コンポーネントとアセスメントタスクをパイプラインにカプセル化するクラウドベースのサービスフレームワークを提案する。
我々は、AIモデルの5つの品質特性を評価するために、XAIサービスの応用を実証する。
論文 参考訳(メタデータ) (2024-01-22T00:37:01Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
本稿では,人工知能(AGI)モデルとその前駆体の性能と動作を分類する枠組みを提案する。
このフレームワークは、AGIのパフォーマンス、一般性、自律性のレベルを導入し、モデルを比較し、リスクを評価し、AGIへの道筋に沿って進捗を測定する共通の言語を提供する。
論文 参考訳(メタデータ) (2023-11-04T17:44:58Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
アスペクトベースの感情分析(ABSA)は、ソーシャルメディアのテキストやレビューの背後にある製品やサービスの特定の側面に対して、特定の感情の極性を自動的に推測することを目的としている。
我々は、モデル、データ、トレーニングを含むあらゆる可能な角度からボトルネックを体系的に再考することで、ABSAの堅牢性を高めることを提案する。
論文 参考訳(メタデータ) (2023-04-19T11:07:43Z) - The Role of Large Language Models in the Recognition of Territorial
Sovereignty: An Analysis of the Construction of Legitimacy [67.44950222243865]
Google MapsやLarge Language Models (LLM)のような技術ツールは、しばしば公平で客観的であると見なされる。
我々は、クリミア、ウェストバンク、トランスニトリアの3つの論争領域の事例を、ウィキペディアの情報と国連の決議に対するChatGPTの反応を比較して強調する。
論文 参考訳(メタデータ) (2023-03-17T08:46:49Z) - A curated, ontology-based, large-scale knowledge graph of artificial
intelligence tasks and benchmarks [4.04540578484476]
インテリジェンスタスクオントロジーと知識グラフ(ITO)は、人工知能タスク、ベンチマーク結果、パフォーマンスメトリクスに関する包括的なリソースである。
ITOは、人工知能タスク、ベンチマーク結果、パフォーマンスメトリクスに関する、豊富な構造化と手作業によるリソースである。
ITOの目標は、AIタスクと能力のグローバルな状況に関する、正確でネットワークベースの分析を可能にすることだ。
論文 参考訳(メタデータ) (2021-10-04T13:25:53Z) - Informing Autonomous Deception Systems with Cyber Expert Performance
Data [0.0]
本稿では、逆強化学習(IRL)を用いて攻撃行動、攻撃行動の有用性、究極的にはサイバー詐欺が阻止できる決定ポイントの洞察を得る可能性について検討する。
例えば、Tularosaの研究は、攻撃者がよく使う現実世界の技術とツールの実験データを提供し、そこからコアデータを活用して、自律的なサイバー防衛システムに通知する。
論文 参考訳(メタデータ) (2021-08-31T20:28:09Z) - A Review of Explainable Artificial Intelligence in Manufacturing [0.8793721044482613]
製造領域における人工知能(AI)システムの実装は、高い生産効率、優れた性能、より安全な運用を可能にする。
これらのモデルの精度が高いにもかかわらず、それらは主にブラックボックスと考えられており、人間には理解できない。
本稿では,モデルの透明性を高める手段として,説明可能な人工知能(XAI)技術の概要を紹介する。
論文 参考訳(メタデータ) (2021-07-05T21:59:55Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。