論文の概要: The Use of Artificial Intelligence in Military Intelligence: An Experimental Investigation of Added Value in the Analysis Process
- arxiv url: http://arxiv.org/abs/2412.03610v1
- Date: Wed, 04 Dec 2024 13:56:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:39:53.240800
- Title: The Use of Artificial Intelligence in Military Intelligence: An Experimental Investigation of Added Value in the Analysis Process
- Title(参考訳): 軍事情報における人工知能の利用 : 分析過程における付加価値の実験的検討
- Authors: Christian Nitzl, Achim Cyran, Sascha Krstanovic, Uwe M. Borghoff,
- Abstract要約: AIが軍のデータ分析をどのように強化できるかは、まだはっきりしていない。
AIデモンストレーターのDeepCOMは、スタートアップのアレフ・アルファと共同で開発された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: It is beyond dispute that the potential benefits of artificial intelligence (AI) in military intelligence are considerable. Nevertheless, it remains uncertain precisely how AI can enhance the analysis of military data. The aim of this study is to address this issue. To this end, the AI demonstrator deepCOM was developed in collaboration with the start-up Aleph Alpha. The AI functions include text search, automatic text summarization and Named Entity Recognition (NER). These are evaluated for their added value in military analysis. It is demonstrated that under time pressure, the utilization of AI functions results in assessments clearly superior to that of the control group. Nevertheless, despite the demonstrably superior analysis outcome in the experimental group, no increase in confidence in the accuracy of their own analyses was observed. Finally, the paper identifies the limitations of employing AI in military intelligence, particularly in the context of analyzing ambiguous and contradictory information.
- Abstract(参考訳): 軍事情報における人工知能(AI)の潜在的な利点は、議論の域を出ない。
それでも、AIが軍データの分析をいかに強化できるかははっきりしていない。
本研究の目的はこの問題に対処することである。
この目的のために、AIデモンストレーターのDeepCOMは、スタートアップのアレフ・アルファと共同で開発された。
AI機能には、テキスト検索、自動テキスト要約、名前付きエンティティ認識(NER)が含まれる。
これらは軍事分析における付加価値として評価される。
時間的圧力下では、AI関数の利用は、制御群のそれよりも明らかに優れていることが示されている。
しかし, 実験群では, 明らかに優れた解析結果にもかかわらず, 解析精度の上昇は認められなかった。
最後に、軍事情報学におけるAIの活用の限界、特に曖昧で矛盾のある情報を分析する上での限界を明らかにする。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Harnessing AI for efficient analysis of complex policy documents: a case study of Executive Order 14110 [44.99833362998488]
法律、規制、執行命令などの政策文書は、社会の形成に不可欠である。
本研究の目的は、政策分析の合理化におけるAIの可能性を評価し、現在のAIアプローチの強みと限界を特定することである。
論文 参考訳(メタデータ) (2024-06-10T11:19:28Z) - Open-Source Assessments of AI Capabilities: The Proliferation of AI Analysis Tools, Replicating Competitor Models, and the Zhousidun Dataset [0.4864598981593653]
人工知能の軍事能力への統合は、世界中の主要な軍事力の標準となっている。
本稿では、Zhousidunデータセットの詳細な検証を通して、軍用AIモデルを分析するためのオープンソースの方法論を実証する。
論文 参考訳(メタデータ) (2024-05-20T16:51:25Z) - Analyzing Character and Consciousness in AI-Generated Social Content: A
Case Study of Chirper, the AI Social Network [0.0]
この研究はAIの振る舞いを包括的に調査し、多様な設定がチャーパーの反応に与える影響を分析している。
一連の認知テストを通じて、この研究はチャーパーズの自己認識とパターン認識の能力を評価する。
この研究の興味深い側面は、チャーパーのハンドルやパーソナリティのタイプがパフォーマンスに与える影響を探ることである。
論文 参考訳(メタデータ) (2023-08-30T15:40:18Z) - Training Towards Critical Use: Learning to Situate AI Predictions
Relative to Human Knowledge [22.21959942886099]
我々は、人間がAIモデルでは利用できない知識に対してAI予測をシチュレートする能力を集中させる「クリティカルユース」と呼ばれるプロセス指向の適切な依存の概念を紹介します。
我々は、児童虐待スクリーニングという複雑な社会的意思決定環境でランダム化オンライン実験を行う。
参加者にAIによる意思決定を実践する、迅速で低い機会を提供することによって、初心者は、経験豊富な労働者に類似したAIとの不一致のパターンを示すようになった。
論文 参考訳(メタデータ) (2023-08-30T01:54:31Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。