Joint Prediction Regions for time-series models
- URL: http://arxiv.org/abs/2405.12234v2
- Date: Mon, 27 May 2024 13:52:39 GMT
- Title: Joint Prediction Regions for time-series models
- Authors: Eshant English,
- Abstract summary: It is an easy task to compute Joint Prediction regions (JPR) when the data is IID.
This project aims to implement Wolf and Wunderli's method for constructing JPRs and compare it with other methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning algorithms are notorious for providing point predictions but not prediction intervals. There are many applications where one requires confidence in predictions and prediction intervals. Stringing together, these intervals give rise to joint prediction regions with the desired significance level. It is an easy task to compute Joint Prediction regions (JPR) when the data is IID. However, the task becomes overly difficult when JPR is needed for time series because of the dependence between the observations. This project aims to implement Wolf and Wunderli's method for constructing JPRs and compare it with other methods (e.g. NP heuristic, Joint Marginals). The method under study is based on bootstrapping and is applied to different datasets (Min Temp, Sunspots), using different predictors (e.g. ARIMA and LSTM). One challenge of applying the method under study is to derive prediction standard errors for models, it cannot be obtained analytically. A novel method to estimate prediction standard error for different predictors is also devised. Finally, the method is applied to a synthetic dataset to find empirical averages and empirical widths and the results from the Wolf and Wunderli paper are consolidated. The experimental results show a narrowing of width with strong predictors like neural nets, widening of width with increasing forecast horizon H and decreasing significance level alpha, controlling the width with parameter k in K-FWE, and loss of information using Joint Marginals.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - High-dimensional prediction for count response via sparse exponential weights [0.0]
This paper introduces a novel probabilistic machine learning framework for high-dimensional count data prediction.
A key contribution is a novel risk measure tailored to count data prediction, with theoretical guarantees for prediction risk using PAC-Bayesian bounds.
Our results include non-asymptotic oracle inequalities, demonstrating rate-optimal prediction error without prior knowledge of sparsity.
arXiv Detail & Related papers (2024-10-20T12:45:42Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Sparse Deep Learning for Time Series Data: Theory and Applications [9.878774148693575]
Sparse deep learning has become a popular technique for improving the performance of deep neural networks.
This paper studies the theory for sparse deep learning with dependent data.
Our results indicate that the proposed method can consistently identify the autoregressive order for time series data.
arXiv Detail & Related papers (2023-10-05T01:26:13Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR)
It enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate in a distribution-free manner.
Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable.
arXiv Detail & Related papers (2022-07-28T16:40:26Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Rapid Risk Minimization with Bayesian Models Through Deep Learning
Approximation [9.93116974480156]
We introduce a novel combination of Bayesian Models (BMs) and Neural Networks (NNs) for making predictions with a minimum expected risk.
Our approach combines the data efficiency and interpretability of a BM with the speed of a NN.
We achieve risk minimized predictions significantly faster than standard methods with a negligible loss on the testing dataset.
arXiv Detail & Related papers (2021-03-29T15:08:25Z) - Interpretable Machines: Constructing Valid Prediction Intervals with
Random Forests [0.0]
An important issue when using Machine Learning algorithms in recent research is the lack of interpretability.
A contribution to this gap for the Random Forest Regression Learner is presented here.
Several parametric and non-parametric prediction intervals are provided for Random Forest point predictions.
A thorough investigation through Monte-Carlo simulation is conducted evaluating the performance of the proposed methods.
arXiv Detail & Related papers (2021-03-09T23:05:55Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.