論文の概要: Learning tensor trains from noisy functions with application to quantum simulation
- arxiv url: http://arxiv.org/abs/2405.12730v1
- Date: Tue, 21 May 2024 12:36:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:29:38.962478
- Title: Learning tensor trains from noisy functions with application to quantum simulation
- Title(参考訳): 雑音関数からのテンソルトレインの学習と量子シミュレーションへの応用
- Authors: Kohtaroh Sakaue, Hiroshi Shinaoka, Rihito Sakurai,
- Abstract要約: 本稿では,TTの初期推定から始まり,非線形最小二乗を用いて最適化する手法を提案する。
我々は、擬似想像時間進化に基づく量子シミュレーションにおいて、この最適化された相関関数のTTを用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor cross interpolation (TCI) is a powerful technique for learning a tensor train (TT) by adaptively sampling a target tensor based on an interpolation formula. However, when the tensor evaluations contain random noise, optimizing the TT is more advantageous than interpolating the noise. Here, we propose a new method that starts with an initial guess of TT and optimizes it using non-linear least-squares by fitting it to measured points obtained from TCI. We use quantics TCI (QTCI) in this method and demonstrate its effectiveness on sine and two-time correlation functions, with each evaluated with random noise. The resulting TT exhibits increased robustness against noise compared to the QTCI method. Furthermore, we employ this optimized TT of the correlation function in quantum simulation based on pseudo-imaginary-time evolution, resulting in ground-state energy with higher accuracy than the QTCI or Monte Carlo methods.
- Abstract(参考訳): テンソルクロス補間 (TCI) は, 対象テンソルを補間式に基づいて適応的にサンプリングすることにより, テンソルトレイン (TT) を学習する強力な手法である。
しかし、テンソル評価がランダムノイズを含む場合、TTの最適化はノイズを補間するよりも有利である。
そこで本研究では,TTの初期推定から始める新しい手法を提案する。
本手法では量子TCI (QTCI) を用いて, 正弦関数と2時間相関関数の有効性を, ランダムノイズで評価した。
その結果,QTCI法に比べて雑音に対する堅牢性は向上した。
さらに、擬似想像時間進化に基づく量子シミュレーションにおける相関関数の最適化TTを用いて、QTCI法やモンテカルロ法よりも高い精度で基底状態エネルギーを得る。
関連論文リスト
- Adaptive variational quantum dynamics simulations with compressed circuits and fewer measurements [4.2643127089535104]
AVQDS(T)と呼ばれる適応変分量子力学シミュレーション(AVQDS)法の改良版を示す。
このアルゴリズムは、変分力学の精度の尺度であるマクラクラン距離を一定しきい値以下に保つために、アンザッツ回路に不連結なユニタリゲートの層を適応的に加算する。
また、雑音耐性を増強した変動パラメータに対する線形運動方程式を解くために、固有値トランケーションに基づく手法を示す。
論文 参考訳(メタデータ) (2024-08-13T02:56:43Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
コーンシャム密度汎関数論(KS-DFT)を解くための深層学習手法を提案する。
このような手法はSCF法と同じ表現性を持つが,計算複雑性は低下する。
さらに,本手法により,より複雑なニューラルベース波動関数の探索が可能となった。
論文 参考訳(メタデータ) (2023-03-01T10:38:10Z) - Multi-mode Tensor Train Factorization with Spatial-spectral
Regularization for Remote Sensing Images Recovery [1.3272510644778104]
マルチモードTT因子化と空間スペクトルの滑らか度正規化による新しい低MTTランクテンソル完備化モデルを提案する。
MTTD3R法は,視覚的,定量的に比較した手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-05T07:36:08Z) - Tensor-Train Split Operator KSL (TT-SOKSL) Method for Quantum Dynamics
Simulations [0.0]
テンソルトレイン(TT)/マトリクス積状態(MPS)表現における量子シミュレーションのためのテンソルトレイン分割演算KSL(TT-SOKSL)法を提案する。
我々は、ロドプシンにおける網膜色素の光異性化のシミュレーションに応用したTT-SOKSLの精度と効率を実証した。
論文 参考訳(メタデータ) (2022-03-01T15:12:10Z) - Provable Tensor-Train Format Tensor Completion by Riemannian
Optimization [22.166436026482984]
TT形式テンソル完備化のためのRGradアルゴリズムの収束に関する最初の理論的保証を提供する。
また, 逐次2次モーメント法(Sequence second-order moment method)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-27T08:13:58Z) - Spectral Tensor Train Parameterization of Deep Learning Layers [136.4761580842396]
重み行列の低ランクパラメータ化をDeep Learningコンテキストに埋め込まれたスペクトル特性を用いて検討する。
分類設定におけるニューラルネットワーク圧縮の効果と,生成的対角トレーニング設定における圧縮および安定性トレーニングの改善について述べる。
論文 参考訳(メタデータ) (2021-03-07T00:15:44Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
特徴相互作用の効率的なモデリングは、非順序的タスクに対する教師あり学習の基盤となる。
この問題を緩和するため、モデルパラメータをテンソルとして暗黙的に表現することが提案されている。
表現性を向上するため,任意の高次元特徴ベクトルに特徴写像を適用できるようにフレームワークを一般化する。
論文 参考訳(メタデータ) (2020-01-27T22:38:40Z) - A Unified Framework for Coupled Tensor Completion [42.19293115131073]
結合テンソル分解は、潜在結合因子に由来する事前知識を組み込むことで、結合データ構造を明らかにする。
TRは強力な表現能力を持ち、いくつかの多次元データ処理アプリケーションで成功している。
提案手法は, 合成データに関する数値実験で検証され, 実世界のデータに対する実験結果は, 回収精度の観点から, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-09T02:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。