論文の概要: From Today's Code to Tomorrow's Symphony: The AI Transformation of Developer's Routine by 2030
- arxiv url: http://arxiv.org/abs/2405.12731v1
- Date: Tue, 21 May 2024 12:37:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:29:38.959562
- Title: From Today's Code to Tomorrow's Symphony: The AI Transformation of Developer's Routine by 2030
- Title(参考訳): 今日の法典から明日の交響曲:2030年までの開発者ルーチンのAIトランスフォーメーション
- Authors: Matteo Ciniselli, Niccolò Puccinelli, Ketai Qiu, Luca Di Grazia,
- Abstract要約: 我々は,2024年におけるAI支援プログラミングの現状と,2030年の予測とを比較分析する。
私たちは、2030人の開発者に包括的なサポートを提供するAIツールであるHyperAssistantを構想しています。
- 参考スコア(独自算出の注目度): 3.437372707846067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving landscape of software engineering, the integration of Artificial Intelligence (AI) into the Software Development Life-Cycle (SDLC) heralds a transformative era for developers. Recently, we have assisted to a pivotal shift towards AI-assisted programming, exemplified by tools like GitHub Copilot and OpenAI's ChatGPT, which have become a crucial element for coding, debugging, and software design. In this paper we provide a comparative analysis between the current state of AI-assisted programming in 2024 and our projections for 2030, by exploring how AI advancements are set to enhance the implementation phase, fundamentally altering developers' roles from manual coders to orchestrators of AI-driven development ecosystems. We envision HyperAssistant, an augmented AI tool that offers comprehensive support to 2030 developers, addressing current limitations in mental health support, fault detection, code optimization, team interaction, and skill development. We emphasize AI as a complementary force, augmenting developers' capabilities rather than replacing them, leading to the creation of sophisticated, reliable, and secure software solutions. Our vision seeks to anticipate the evolution of programming practices, challenges, and future directions, shaping a new paradigm where developers and AI collaborate more closely, promising a significant leap in SE efficiency, security and creativity.
- Abstract(参考訳): ソフトウェアエンジニアリングの急速な発展の中で、人工知能(AI)をソフトウェア開発ライフサイクル(SDLC)に統合することは、開発者にとって変革的な時代を告げるものだ。
最近、私たちは、コーディング、デバッグ、ソフトウェア設計の重要な要素となったGitHub CopilotやOpenAIのChatGPTといったツールによって実証された、AI支援プログラミングへの重要なシフトを支援しました。
本稿では,2024年におけるAI支援プログラミングの現状と2030年における私たちの予測との対比分析を行い,AIの進歩が実装フェーズの強化にどのように寄与するかを考察し,手動コーダからAI駆動開発エコシステムのオーケストレータへの開発者の役割を根本的に変えた。
メンタルヘルスサポート、障害検出、コードの最適化、チームインタラクション、スキル開発における現在の制限に対処する、2030人の開発者に包括的なサポートを提供するAIツールであるHyperAssistantを構想している。
私たちはAIを補完的な力として強調し、それを置き換えるのではなく、開発者の能力を増強し、洗練された、信頼性があり、セキュアなソフトウェアソリューションを作り上げます。
私たちのビジョンは、プログラミングプラクティス、課題、将来の方向性の進化を予測し、開発者とAIがより緊密に協力し、SE効率、セキュリティ、クリエイティビティにおいて大きな飛躍を約束する新しいパラダイムを形成することです。
関連論文リスト
- OpenDevin: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
私たちは、人間の開発者と同様の方法で世界と対話するAIエージェントを開発するためのプラットフォームであるOpenDevinを紹介します。
プラットフォームが新しいエージェントの実装を可能にし、コード実行のためのサンドボックス環境との安全なインタラクション、評価ベンチマークの導入について説明する。
論文 参考訳(メタデータ) (2024-07-23T17:50:43Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - The Future of Software Engineering in an AI-Driven World [4.915744683251151]
今後5年間では、人間開発者とAIの共生的なパートナーシップが増加するだろう。
私たちは、AI駆動の世界におけるソフトウェア開発の未来に関するビジョンを示し、このビジョンを実現するために研究コミュニティが取り組むべき重要な課題を探求します。
論文 参考訳(メタデータ) (2024-06-11T21:46:19Z) - Rethinking Software Engineering in the Foundation Model Era: From Task-Driven AI Copilots to Goal-Driven AI Pair Programmers [30.996760992473064]
我々は,人間開発者と協調する目標駆動型AI駆動ペアプログラマへのパラダイムシフトを提案する。
目標駆動、人間パートナー、SE認識、自己学習のAIペアプログラマを想定する。
論文 参考訳(メタデータ) (2024-04-16T02:10:20Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Exploring the intersection of Generative AI and Software Development [0.0]
生成AIとソフトウェアエンジニアリングの相乗効果は、変革的なフロンティアとして現れます。
このホワイトペーパーは、探索されていない領域に展開し、生成的AI技術がソフトウェア開発にどのように革命をもたらすかを解明する。
これはステークホルダーのためのガイドとして機能し、ソフトウェア工学における生成AIの適用に関する議論と実験を促している。
論文 参考訳(メタデータ) (2023-12-21T19:23:23Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z) - Generative AI Assistants in Software Development Education: A vision for
integrating Generative AI into educational practice, not instinctively
defending against it [10.238740117460386]
ジェネレーティブAI(GAI)アシスタントは、人々の想像力(と恐怖)に火をつけた
業界がどのように適応するかは不明だが、大規模なソフトウェア企業によってこれらの技術を統合する動きは、意図と方向性を明確に示している。
論文 参考訳(メタデータ) (2023-03-24T11:45:52Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Enabling Design Methodologies and Future Trends forEdge AI:
Specialization and Co-design [37.54971466190214]
エッジAI開発スタック全体にまたがる、最新の可能な設計方法論に関する包括的な調査を提供する。
効率的なエッジAI開発のための重要な手法は、単層特殊化とクロス層共同設計である。
論文 参考訳(メタデータ) (2021-03-25T16:29:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。