論文の概要: Learning the Infinitesimal Generator of Stochastic Diffusion Processes
- arxiv url: http://arxiv.org/abs/2405.12940v1
- Date: Tue, 21 May 2024 17:13:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 12:40:41.937839
- Title: Learning the Infinitesimal Generator of Stochastic Diffusion Processes
- Title(参考訳): 確率拡散過程の無限小生成器の学習
- Authors: Vladimir R. Kostic, Karim Lounici, Helene Halconruy, Timothee Devergne, Massimiliano Pontil,
- Abstract要約: 拡散推定過程の無限小生成系のデータ駆動学習に対処する。
提案手法は,全知識設定と部分的知識設定の両方において,エネルギーベースのリスクメトリックを通じて,物理的先行性を統合する。
- 参考スコア(独自算出の注目度): 23.737384504740373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address data-driven learning of the infinitesimal generator of stochastic diffusion processes, essential for understanding numerical simulations of natural and physical systems. The unbounded nature of the generator poses significant challenges, rendering conventional analysis techniques for Hilbert-Schmidt operators ineffective. To overcome this, we introduce a novel framework based on the energy functional for these stochastic processes. Our approach integrates physical priors through an energy-based risk metric in both full and partial knowledge settings. We evaluate the statistical performance of a reduced-rank estimator in reproducing kernel Hilbert spaces (RKHS) in the partial knowledge setting. Notably, our approach provides learning bounds independent of the state space dimension and ensures non-spurious spectral estimation. Additionally, we elucidate how the distortion between the intrinsic energy-induced metric of the stochastic diffusion and the RKHS metric used for generator estimation impacts the spectral learning bounds.
- Abstract(参考訳): 本稿では,自然系と物理系の数値シミュレーションを理解するために不可欠な,確率拡散過程の無限小生成系のデータ駆動学習について述べる。
ジェネレータの非有界性は、ヒルベルト・シュミット作用素の従来の解析手法を非効率に活用するなど、大きな課題を生じさせる。
これを解決するために,これらの確率過程のエネルギー関数に基づく新しい枠組みを導入する。
提案手法は,全知識設定と部分的知識設定の両方において,エネルギーベースのリスクメトリックを通じて,物理的先行性を統合する。
部分的知識設定におけるカーネルヒルベルト空間(RKHS)の再生成における低ランク推定器の統計的性能を評価する。
特に,本手法は状態空間次元に依存しない学習境界を提供し,非特異なスペクトル推定を確実にする。
さらに,確率拡散の固有エネルギー誘起測定値と生成器推定に用いるRKHS測定値との歪みがスペクトル学習境界に与える影響を解明する。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces [16.00267662259167]
本稿では、再生カーネルヒルベルト空間(RKHS)とそのスペクトル上で定義されるクープマン作用素を推定するための新しいアプローチを提案する。
本稿では,RKHSの固有構造とジェットと呼ばれる幾何学的概念を活かしたJetDMD(Jet Dynamic Mode Decomposition)を提案する。
この手法は従来の拡張動的モード分解(EDMD)を精度よく洗練し、特に固有値の数値的な推定を行う。
論文 参考訳(メタデータ) (2024-03-04T22:28:20Z) - Statistical Mechanics of Dynamical System Identification [3.1484174280822845]
我々はスパース方程式探索アルゴリズムを統計的に解析する手法を開発した。
このフレームワークでは、統計力学は複雑さとフィットネスの間の相互作用を分析するためのツールを提供する。
論文 参考訳(メタデータ) (2024-03-04T04:32:28Z) - Weighted Riesz Particles [0.0]
対象分布を、パラメータの無限次元空間が多くの決定論的部分多様体からなる写像と考える。
我々は、Rieszと呼ばれる点の性質を研究し、それをシーケンシャルMCMCに埋め込む。
低い評価で高い受け入れ率が得られることが分かりました。
論文 参考訳(メタデータ) (2023-12-01T14:36:46Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - A Kernel-Based Approach to Non-Stationary Reinforcement Learning in
Metric Spaces [53.47210316424326]
KeRNSは、非定常マルコフ決定過程におけるエピソード強化学習のためのアルゴリズムである。
我々は、状態-作用空間の被覆次元と時間とともにMDPの総変動にスケールする後悔境界を証明した。
論文 参考訳(メタデータ) (2020-07-09T21:37:13Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
自由エネルギー摂動 (FEP) は60年以上前にズワンツィヒによって自由エネルギー差を推定する方法として提案された。
FEPは、分布間の十分な重複の必要性という厳しい制限に悩まされている。
目標自由エネルギー摂動(Targeted Free Energy Perturbation)と呼ばれるこの問題を緩和するための1つの戦略は、オーバーラップを増やすために構成空間の高次元マッピングを使用する。
論文 参考訳(メタデータ) (2020-02-12T11:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。