論文の概要: Weighted Riesz Particles
- arxiv url: http://arxiv.org/abs/2312.00621v1
- Date: Fri, 1 Dec 2023 14:36:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 14:21:06.235347
- Title: Weighted Riesz Particles
- Title(参考訳): 重み付きリース粒子
- Authors: Xiongming Dai, Gerald Baumgartner
- Abstract要約: 対象分布を、パラメータの無限次元空間が多くの決定論的部分多様体からなる写像と考える。
我々は、Rieszと呼ばれる点の性質を研究し、それをシーケンシャルMCMCに埋め込む。
低い評価で高い受け入れ率が得られることが分かりました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Markov chain Monte Carlo (MCMC) methods are simulated by local exploration of
complex statistical distributions, and while bypassing the cumbersome
requirement of a specific analytical expression for the target, this stochastic
exploration of an uncertain parameter space comes at the expense of a large
number of samples, and this computational complexity increases with parameter
dimensionality. Although at the exploration level, some methods are proposed to
accelerate the convergence of the algorithm, such as tempering, Hamiltonian
Monte Carlo, Rao-redwellization, and scalable methods for better performance,
it cannot avoid the stochastic nature of this exploration. We consider the
target distribution as a mapping where the infinite-dimensional Eulerian space
of the parameters consists of a number of deterministic submanifolds and
propose a generalized energy metric, termed weighted Riesz energy, where a
number of points is generated through pairwise interactions, to discretize
rectifiable submanifolds. We study the properties of the point, called Riesz
particle, and embed it into sequential MCMC, and we find that there will be
higher acceptance rates with fewer evaluations, we validate it through
experimental comparative analysis from a linear Gaussian state-space model with
synthetic data and a non-linear stochastic volatility model with real-world
data.
- Abstract(参考訳): マルコフ連鎖モンテカルロ法(mcmc)は、複素統計分布の局所的探索によってシミュレーションされ、対象に対する特定の解析式に対する煩雑な要求を回避しつつ、不確定なパラメータ空間の確率的探索は多くのサンプルの犠牲となり、この計算複雑性はパラメータ次元とともに増加する。
探索レベルでは、テンペリング、ハミルトニアンモンテカルロ、rao-redwellization、スケーラブルな手法などのアルゴリズムの収束を加速するいくつかの手法が提案されているが、この探索の確率的性質を避けることはできない。
対象分布は、パラメータの無限次元ユーレアー空間が多くの決定論的部分多様体からなる写像であり、一般化されたエネルギー計量、すなわち重み付きリースエネルギー(英語版)を提案する。
本研究では,リニア・ガウス状態空間モデル(合成データ)と非線型確率的ボラティリティモデル(実世界データ)を用いて実験的検討を行い,各点の特性を解析し,逐次的mcmcに組み込むことにより,より少ない評価で高い受入率が得られることを示す。
関連論文リスト
- Kinetic Interacting Particle Langevin Monte Carlo [0.0]
本稿では,潜在変数モデルにおける統計的推論のために,アンダーダム付きランゲヴィンアルゴリズムの相互作用について紹介し,解析する。
本稿では,パラメータと潜伏変数の空間内で共同で進化する拡散過程を提案する。
統計モデルのパラメータを推定する実用的なアルゴリズムとして,この拡散について2つの明確な考察を行う。
論文 参考訳(メタデータ) (2024-07-08T09:52:46Z) - Dimension-free Relaxation Times of Informed MCMC Samplers on Discrete Spaces [5.075066314996696]
離散空間上でのメトロポリス・ハスティングスアルゴリズムに対する一般混合時間境界を開発する。
我々は,情報化メトロポリス・ハスティングスアルゴリズムのクラスに対して,問題次元に依存しない緩和時間を達成するための十分な条件を確立する。
論文 参考訳(メタデータ) (2024-04-05T02:40:45Z) - Chebyshev Particles [0.0]
まず、対象の後方分布を無限次元ユークリッド空間におけるサンプルの写像として考える。
重み付けされたリース分極量を最大化して、ペアの相互作用により、補正可能な部分多様体を識別する新しい基準を提案する。
我々は,合成データを用いた線形状態空間モデルと実世界のデータを用いた非線形ボラティリティモデルを用いたパラメータ推論実験により,高い性能を実現した。
論文 参考訳(メタデータ) (2023-09-10T16:40:30Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Object based Bayesian full-waveform inversion for shear elastography [0.0]
組織中の異常画像のせん断エラストグラフィーにおける不確かさを定量化する計算手法を開発した。
パラメータフィールドの後方確率は異常の幾何とそのせん断率を表わす。
滑らかで不規則な形状の合成2次元試験に対するアプローチを実証する。
論文 参考訳(メタデータ) (2023-05-11T08:25:25Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Surrogate models for quantum spin systems based on reduced order
modeling [0.0]
本稿では,還元基底法(RBM)の原理に基づいて,量子モデルの位相図を研究する手法を提案する。
我々はこの手法を2つの実験ケースでベンチマークし、励起リドバーグ原子の連鎖と幾何学的にフラストレーションされた反強磁性2次元格子モデルを示す。
論文 参考訳(メタデータ) (2021-10-29T10:17:39Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。