論文の概要: Statistical Mechanics of Dynamical System Identification
- arxiv url: http://arxiv.org/abs/2403.01723v1
- Date: Mon, 4 Mar 2024 04:32:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 20:04:02.636232
- Title: Statistical Mechanics of Dynamical System Identification
- Title(参考訳): 力学系同定の統計力学
- Authors: Andrei A. Klishin, Joseph Bakarji, J. Nathan Kutz, Krithika Manohar
- Abstract要約: 我々はスパース方程式探索アルゴリズムを統計的に解析する手法を開発した。
このフレームワークでは、統計力学は複雑さとフィットネスの間の相互作用を分析するためのツールを提供する。
- 参考スコア(独自算出の注目度): 3.1484174280822845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recovering dynamical equations from observed noisy data is the central
challenge of system identification. We develop a statistical mechanical
approach to analyze sparse equation discovery algorithms, which typically
balance data fit and parsimony through a trial-and-error selection of
hyperparameters. In this framework, statistical mechanics offers tools to
analyze the interplay between complexity and fitness, in analogy to that done
between entropy and energy. To establish this analogy, we define the
optimization procedure as a two-level Bayesian inference problem that separates
variable selection from coefficient values and enables the computation of the
posterior parameter distribution in closed form. A key advantage of employing
statistical mechanical concepts, such as free energy and the partition
function, is in the quantification of uncertainty, especially in in the
low-data limit; frequently encountered in real-world applications. As the data
volume increases, our approach mirrors the thermodynamic limit, leading to
distinct sparsity- and noise-induced phase transitions that delineate correct
from incorrect identification. This perspective of sparse equation discovery,
is versatile and can be adapted to various other equation discovery algorithms.
- Abstract(参考訳): 観測されたノイズデータから力学方程式を復元することは、システム同定の重要な課題である。
我々は,超パラメータの試行錯誤選択を通じてデータの適合性とパリティのバランスをとるスパース方程式発見アルゴリズムを統計力学的に解析する手法を開発した。
このフレームワークでは、統計力学は、エントロピーとエネルギーの相互作用と類似して、複雑性とフィットネスの間の相互作用を分析するツールを提供する。
この類似性を確立するために,変数選択を係数値から分離し,後続パラメータ分布を閉じた形で計算できる2段階ベイズ推定問題として最適化手順を定式化する。
自由エネルギーや分割関数のような統計力学的概念を用いる重要な利点は、特に低データ限界における不確実性の定量化であり、現実のアプリケーションで頻繁に発生する。
データ量が増加するにつれて、我々のアプローチは熱力学的限界を反映し、不正確な識別から正しく導かれるスパーシティとノイズによる位相遷移を区別する。
スパース方程式発見のこの視点は多用途であり、他の様々な方程式発見アルゴリズムに適応することができる。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time [0.0]
工学において、ノイズによって汚染されたデータから非線形力学系を正確にモデル化することは必須かつ複雑である。
連続時間常微分方程式(ODE)の統合は、理論モデルと離散サンプリングデータとの整合に不可欠である。
本稿では,非線形力学系の結合パラメータ-状態同定におけるODEの確率論的数値解法の適用例を示す。
論文 参考訳(メタデータ) (2024-04-19T14:52:14Z) - Response Theory via Generative Score Modeling [0.0]
スコアベース生成モデルとGFDT(Generalized Fluctuation-Dissipation Theorem)を組み合わせた外部摂動に対する動的システムの応答解析手法を提案する。
この手法は,非ガウス統計を含むシステム応答の正確な推定を可能にする。
論文 参考訳(メタデータ) (2024-02-01T21:38:10Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
量子系の外部自由度への不可避結合は、散逸(非単体)ダイナミクスをもたらす。
本稿では,グリーン関数の(散逸的な)格子計算に基づいて,これらのシステムに対処する手法を提案する。
本手法のパワーを,複雑性を増大させる駆動散逸型ボゾン鎖のいくつかの例で説明する。
論文 参考訳(メタデータ) (2022-02-15T19:00:09Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
我々は、利用可能なデータから非ガウスL'evy雑音の方程式を推定し、動的挙動を合理的に予測する。
理論的枠組みを確立し、非対称なL'evyジャンプ測度、ドリフト、拡散を計算する数値アルゴリズムを設計する。
この方法は、利用可能なデータセットから規制法則を発見し、複雑なランダム現象のメカニズムを理解するのに有効なツールとなる。
論文 参考訳(メタデータ) (2021-07-21T14:50:36Z) - A Data-Driven Approach for Discovering Stochastic Dynamical Systems with
Non-Gaussian Levy Noise [5.17900889163564]
ノイズの多いデータセットから規制法則を抽出する新しいデータ駆動手法を開発した。
まず, ドリフト係数, 拡散係数, ジャンプ測度を表現し, 実現可能な理論的枠組みを確立する。
そこで我々は, ドリフト, 拡散係数, ジャンプ測度を計算する数値アルゴリズムを設計し, ガウス雑音および非ガウス雑音による支配方程式を抽出する。
論文 参考訳(メタデータ) (2020-05-07T21:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。