論文の概要: Strategic Deployment of Honeypots in Blockchain-based IoT Systems
- arxiv url: http://arxiv.org/abs/2405.12951v1
- Date: Tue, 21 May 2024 17:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 12:30:44.670177
- Title: Strategic Deployment of Honeypots in Blockchain-based IoT Systems
- Title(参考訳): ブロックチェーンベースのIoTシステムにおけるハニーポットの戦略的展開
- Authors: Daniel Commey, Sena Hounsinou, Garth V. Crosby,
- Abstract要約: 同社は、IoTノード上のスマートコントラクト機能と統合された侵入検知システム(IDS)を活用する、ハニーポットの動的デプロイのためのAI駆動システムモデルを導入した。
このモデルにより、不審な活動に応じて通常のノードをデコイに変換することができ、それによってBIoTネットワークのセキュリティが強化される。
- 参考スコア(独自算出の注目度): 1.3654846342364306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the challenge of enhancing cybersecurity in Blockchain-based Internet of Things (BIoTs) systems, which are increasingly vulnerable to sophisticated cyberattacks. It introduces an AI-powered system model for the dynamic deployment of honeypots, utilizing an Intrusion Detection System (IDS) integrated with smart contract functionalities on IoT nodes. This model enables the transformation of regular nodes into decoys in response to suspicious activities, thereby strengthening the security of BIoT networks. The paper analyses strategic interactions between potential attackers and the AI-enhanced IDS through a game-theoretic model, specifically Bayesian games. The model focuses on understanding and predicting sophisticated attacks that may initially appear normal, emphasizing strategic decision-making, optimized honeypot deployment, and adaptive strategies in response to evolving attack patterns.
- Abstract(参考訳): 本稿では,ブロックチェーンベースのモノのインターネット(Internet of Things, Internet of Things, モノのインターネット)システムにおけるサイバーセキュリティの強化という課題に対処する。
同社は、IoTノード上のスマートコントラクト機能と統合された侵入検知システム(IDS)を活用する、ハニーポットの動的デプロイのためのAI駆動システムモデルを導入した。
このモデルにより、不審な活動に応じて正規ノードをデコイに変換することができ、それによってBIoTネットワークのセキュリティが強化される。
本論文は,ゲーム理論モデル,特にベイズゲームを用いて,潜在的な攻撃者とAI強化IDSとの戦略的相互作用を解析する。
このモデルは、当初正常に見える可能性のある高度な攻撃の理解と予測に焦点を当て、戦略決定、最適化されたハニーポットデプロイメント、そして、進化する攻撃パターンに対応する適応戦略を強調している。
関連論文リスト
- SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
我々は、複合AIシステムに適用可能な、異なるソフトウェアとハードウェアの攻撃について議論する。
複数の攻撃機構を組み合わせることで、孤立攻撃に必要な脅威モデル仮定をいかに削減できるかを示す。
論文 参考訳(メタデータ) (2024-11-20T17:08:38Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - IoT Botnet Detection Using an Economic Deep Learning Model [0.0]
本稿では,IoTボットネット攻撃をさまざまな種類の攻撃とともに検出する経済的な深層学習モデルを提案する。
提案モデルは,実装予算を小さくし,訓練と検出の高速化を図ることで,最先端の検知モデルよりも高い精度を実現した。
論文 参考訳(メタデータ) (2023-02-03T21:41:17Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
適応型ニューラルネットワークの動的対向攻撃問題について検討する。
本稿では,LGM(Leaded Gradient Method)を提案する。
我々のLGMは、動的無意識攻撃法と比較して、優れた敵攻撃性能を達成している。
論文 参考訳(メタデータ) (2022-10-15T01:32:08Z) - AdIoTack: Quantifying and Refining Resilience of Decision Tree Ensemble
Inference Models against Adversarial Volumetric Attacks on IoT Networks [1.1172382217477126]
本稿では,敵攻撃に対する決定木の脆弱性を強調するシステムであるAdIoTackを紹介する。
最悪のシナリオのモデルを評価するために、AdIoTackは、ホワイトボックスの敵学習を実行し、ボリューム攻撃を成功させる。
モデルがIoTデバイスに対する非敵のボリューム攻撃を検知し、多くの敵の攻撃を欠いていることを実証する。
論文 参考訳(メタデータ) (2022-03-18T08:18:03Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - Blockchained Federated Learning for Threat Defense [0.0]
本研究ではフェデレーテッドラーニングを用いたインテリジェント脅威防御システムの開発について紹介する。
提案するフレームワークは,分散型かつ継続的なトレースアルゴリズムの学習にフェデレート学習を併用する。
提案するフレームワークの目的は,Deep Content Inspection(DCI)メソッドによって産業用IoT(IIoT)から派生したスマートシティネットワークトラフィックをインテリジェントに分類することである。
論文 参考訳(メタデータ) (2021-02-25T09:16:48Z) - Robust Federated Learning with Attack-Adaptive Aggregation [45.60981228410952]
フェデレート学習は、モデル中毒やバックドア攻撃など、様々な攻撃に対して脆弱である。
本研究では,ロバスト学習のためのアタック・アダプティブ・アグリゲーション戦略を提案する。
論文 参考訳(メタデータ) (2021-02-10T04:23:23Z) - Towards Learning-automation IoT Attack Detection through Reinforcement
Learning [14.363292907140364]
IoT(Internet of Things)ネットワークにはユニークな特徴があるため、攻撃検出がより困難になる。
従来のハイレート攻撃に加えて、IoT攻撃者が正当なトラフィックを難読化するために、低レート攻撃も広く使用されている。
本稿では,攻撃パターンの変換を自動的に学習し,認識できる強化学習に基づく攻撃検出モデルを提案する。
論文 参考訳(メタデータ) (2020-06-29T06:12:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。