論文の概要: IoT Botnet Detection Using an Economic Deep Learning Model
- arxiv url: http://arxiv.org/abs/2302.02013v4
- Date: Sun, 28 May 2023 15:34:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 01:50:23.174572
- Title: IoT Botnet Detection Using an Economic Deep Learning Model
- Title(参考訳): 経済深層学習モデルを用いたIoTボットネットの検出
- Authors: Nelly Elsayed, Zag ElSayed, Magdy Bayoumi
- Abstract要約: 本稿では,IoTボットネット攻撃をさまざまな種類の攻撃とともに検出する経済的な深層学習モデルを提案する。
提案モデルは,実装予算を小さくし,訓練と検出の高速化を図ることで,最先端の検知モデルよりも高い精度を実現した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress in technology innovation usage and distribution has
increased in the last decade. The rapid growth of the Internet of Things (IoT)
systems worldwide has increased network security challenges created by
malicious third parties. Thus, reliable intrusion detection and network
forensics systems that consider security concerns and IoT systems limitations
are essential to protect such systems. IoT botnet attacks are one of the
significant threats to enterprises and individuals. Thus, this paper proposed
an economic deep learning-based model for detecting IoT botnet attacks along
with different types of attacks. The proposed model achieved higher accuracy
than the state-of-the-art detection models using a smaller implementation
budget and accelerating the training and detecting processes.
- Abstract(参考訳): 技術の革新と流通の急速な進歩は、この10年間で増加している。
世界中のIoT(Internet of Things)システムの急速な成長は、悪意のあるサードパーティが生み出したネットワークセキュリティ上の課題を増大させている。
したがって、セキュリティ上の懸念やIoTシステムの制限を考慮に入れた、信頼性の高い侵入検知とネットワークフォサイシクスシステムは、そのようなシステムを保護する上で不可欠である。
IoTボットネット攻撃は企業や個人にとって重要な脅威のひとつだ。
そこで本稿では,IoTボットネット攻撃を検知する経済的深層学習モデルを提案する。
提案手法は, 実装予算を小さくし, 訓練および検出プロセスを高速化することで, 最先端検出モデルよりも高い精度を達成した。
関連論文リスト
- Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSのデプロイを困難にしている。
軽量CNNと双方向LSTM(BiLSTM)を組み合わせたハイブリッドCNNアーキテクチャを提案し,UNSW-NB15データセット上でのIDSの性能向上を図る。
論文 参考訳(メタデータ) (2024-06-04T20:36:21Z) - Multiclass Classification Procedure for Detecting Attacks on MQTT-IoT
Protocol [0.0]
侵入検知システム(IDS)は、ネットワークレベルでの様々な異常や攻撃からIoTシステムを保護するために使用される。
我々の研究は、IoTシステムの攻撃下でフレームを含むデータセットを使用してIDSにフィードできる分類モデルの作成に重点を置いている。
論文 参考訳(メタデータ) (2024-02-05T18:27:46Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - OMINACS: Online ML-Based IoT Network Attack Detection and Classification
System [0.0]
本稿では,オンライン攻撃検知とネットワークトラフィック分類システムを提案する。
ストリーム機械学習、ディープラーニング、およびアンサンブルラーニングのテクニックを組み合わせる。
悪意のあるトラフィックフローの存在を検出し、それらが表現する攻撃の種類に応じてそれらを分類することができる。
論文 参考訳(メタデータ) (2023-02-18T04:06:24Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
モノのインターネット(Internet of Things, IoT)は、デバイスやものをインターネット上でコントロールすることによって、生活を変えてきた。
IoTネットワークをダウンさせるために、攻撃者はこれらのデバイスを使用してさまざまなネットワーク攻撃を行うことができる。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
論文 参考訳(メタデータ) (2022-07-16T11:12:32Z) - Towards Efficiently Evaluating the Robustness of Deep Neural Networks in
IoT Systems: A GAN-based Method [12.466212057641933]
本稿では,AI-GAN(Attack-Inspired GAN)と呼ばれる新たなフレームワークを提案する。
広範な実験を通じて、AI-GANは攻撃の成功率が高く、既存の手法よりも優れ、生成時間を大幅に短縮する。
論文 参考訳(メタデータ) (2021-11-19T05:54:14Z) - A Novel Online Incremental Learning Intrusion Prevention System [2.5234156040689237]
本稿では,自己組織型インクリメンタルニューラルネットワークとサポートベクトルマシンを併用したネットワーク侵入防止システムを提案する。
提案システムは,その構造上,シグネチャやルールに依存しないセキュリティソリューションを提供するとともに,既知の攻撃や未知の攻撃を高精度にリアルタイムに軽減することができる。
論文 参考訳(メタデータ) (2021-09-20T13:30:11Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
モノのインターネット(IoT)デバイスには、攻撃者によって悪用される可能性のある多くの脆弱性がある傾向がある。
異常検出のような教師なしの技術は、これらのデバイスをプラグ・アンド・プロテクトで保護するために使用することができる。
Raspberry Pi48台からなる分散IoTシミュレーションプラットフォームを提案する。
論文 参考訳(メタデータ) (2020-06-18T14:50:08Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
ボットネットは、DDoS攻撃やスパムなど、多くのネットワーク攻撃の主要なソースとなっている。
本稿では,最新のディープラーニング技術を用いてボットネット検出のポリシーを自動学習するニューラルネットワーク設計の課題について考察する。
論文 参考訳(メタデータ) (2020-03-13T15:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。