論文の概要: Trading Volume Maximization with Online Learning
- arxiv url: http://arxiv.org/abs/2405.13102v1
- Date: Tue, 21 May 2024 17:26:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 04:12:17.810807
- Title: Trading Volume Maximization with Online Learning
- Title(参考訳): オンライン学習による取引ボリュームの最大化
- Authors: Tommaso Cesari, Roberto Colomboni,
- Abstract要約: 取引量を最大化するためにブローカーがどのように振る舞うべきかを検討する。
我々は、トレーダーのバリュエーションを未知の分布を持つi.d.プロセスとしてモデル化する。
提案した価格で販売または購入する意思が各インタラクション後に明らかにされる場合、多言語的後悔を実現するアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 3.8059763597999012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore brokerage between traders in an online learning framework. At any round $t$, two traders meet to exchange an asset, provided the exchange is mutually beneficial. The broker proposes a trading price, and each trader tries to sell their asset or buy the asset from the other party, depending on whether the price is higher or lower than their private valuations. A trade happens if one trader is willing to sell and the other is willing to buy at the proposed price. Previous work provided guidance to a broker aiming at enhancing traders' total earnings by maximizing the gain from trade, defined as the sum of the traders' net utilities after each interaction. In contrast, we investigate how the broker should behave to maximize the trading volume, i.e., the total number of trades. We model the traders' valuations as an i.i.d. process with an unknown distribution. If the traders' valuations are revealed after each interaction (full-feedback), and the traders' valuations cumulative distribution function (cdf) is continuous, we provide an algorithm achieving logarithmic regret and show its optimality up to constant factors. If only their willingness to sell or buy at the proposed price is revealed after each interaction ($2$-bit feedback), we provide an algorithm achieving poly-logarithmic regret when the traders' valuations cdf is Lipschitz and show that this rate is near-optimal. We complement our results by analyzing the implications of dropping the regularity assumptions on the unknown traders' valuations cdf. If we drop the continuous cdf assumption, the regret rate degrades to $\Theta(\sqrt{T})$ in the full-feedback case, where $T$ is the time horizon. If we drop the Lipschitz cdf assumption, learning becomes impossible in the $2$-bit feedback case.
- Abstract(参考訳): オンライン学習フレームワークにおけるトレーサ間のブローカについて検討する。
交換が相互に有益であるならば、2人のトレーダーが1つの資産を交換するために会合する。
ブローカーはトレーディング価格を提案し、各トレーダは、その価格が自身のプライベートなバリュエーションよりも高いか低いかに応じて、その資産を売却したり、相手から資産を購入しようとする。
取引は、一方のトレーダーが売り、もう一方のトレーダーが提案された価格で買いたい場合に行われる。
それまでの作業は、トレーダーの利益を最大化してトレーダーの総利益を高めることを目的としたブローカーへのガイダンスを提供し、トレーダーの純益の合計として各取引後の取引が定義された。
対照的に、取引量、すなわち取引総数を最大化するためにブローカーがどのように振る舞うかを検討する。
我々は、トレーダーのバリュエーションを未知の分布を持つi.d.プロセスとしてモデル化する。
相互作用の後にトレーダーのバリュエーションが明らかにされ(フルフィードバック)、トレーダーのバリュエーションが累積分布関数(cdf)が連続である場合、対数後悔を達成するアルゴリズムを提供し、その最適性を一定要素まで示す。
提案された価格で売り買いの意思が各取引の後に明らかにされる場合(2$-bitのフィードバック)、トレーダのcdfがリプシッツであり、このレートがほぼ最適であることを示す場合に、多言語的後悔を達成するアルゴリズムを提供する。
我々は、未知のトレーダーのバリュエーションcdfに対する規則性の仮定を下げることの意味を分析することで、その結果を補完する。
連続 cdf の仮定を下すと、後悔率は $\Theta(\sqrt{T})$ に縮退する。
もしリプシッツ cdf の仮定を捨てると、学習は 2$-bit のフィードバックケースでは不可能になる。
関連論文リスト
- Market Making without Regret [15.588799679661637]
市場メーカが入札価格のB_t$と要求価格のA_t$を、入ってくるトレーダーに提示する、シーケンシャルな意思決定設定について検討する。
トレーダーのバリュエーションが入札価格よりも低い場合、または要求価格より高い場合は、取引(販売または購入)が発生する。
我々は、入札とペアの最良の選択に関して、メーカの後悔を特徴づける。
論文 参考訳(メタデータ) (2024-11-21T10:13:55Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Fair Online Bilateral Trade [20.243000364933472]
各取引が終わった後、プラットフォームは各トレーダーが現在の価格を受け入れたかどうかのみを学習するときに、取引から公平に利益を得るための後悔の完全な特徴を提示する。
それぞれのインタラクションの後に、プラットフォームが真のトレーダーのバリュエーションを観察できることを許す。
論文 参考訳(メタデータ) (2024-05-22T18:49:11Z) - A Contextual Online Learning Theory of Brokerage [8.049531918823758]
トレーダー間のブローカーのオンライン学習問題における文脈情報の役割について検討する。
有界密度仮定が解かれると、問題は解けなくなる。
論文 参考訳(メタデータ) (2024-05-22T18:38:05Z) - A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
本稿では,垂直的フェデレートラーニング(VFL)において,経済的に効率的な取引を促進するための交渉型特徴取引手法を提案する。
当社のモデルでは,収益ベース最適化の目的を考慮し,パフォーマンスゲインベースの価格設定を取り入れている。
論文 参考訳(メタデータ) (2024-02-23T10:21:07Z) - An Online Learning Theory of Brokerage [3.8059763597999012]
オンライン学習の観点からトレーダー間のブローカーについて検討する。
既に研究されている他の二国間貿易問題とは異なり、指定された買い手や売り手の役割が存在しない場合に焦点を当てる。
第1の場合、最適率は$sqrtT$に低下し、第2の場合、問題は解けなくなる。
論文 参考訳(メタデータ) (2023-10-18T17:01:32Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
分散取引所(DEX)は、テクノロジーを活用した新しいタイプのマーケットプレイスである。
そのようなDECの1つ、Unixwap v3は、流動性プロバイダが資金のアクティブな価格間隔を指定することで、より効率的に資金を割り当てることを可能にする。
これにより、価格間隔を選択するための最適な戦略を見出すことが問題となる。
我々は、この問題を非確率的な報酬を伴うオンライン学習問題として定式化する。
論文 参考訳(メタデータ) (2023-02-01T17:21:40Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
非Fungible Token(NFT)市場は2021年に爆発的に成長し、2022年1月には月間貿易額が60億ドルに達した。
ウォッシュトレーディングの可能性に関する懸念が浮かび上がっており、あるパーティがNFTを取引してそのボリュームを人為的に膨らませる市場操作の形式である。
洗濯物取引は全NFTコレクションの5.66%に影響し、総生産量は3,406,110,774ドルである。
論文 参考訳(メタデータ) (2022-12-02T15:03:35Z) - A Reinforcement Learning Approach in Multi-Phase Second-Price Auction
Design [158.0041488194202]
多相第2価格オークションにおけるリザーブ価格の最適化について検討する。
売り手の視点からは、潜在的に非現実的な入札者の存在下で、環境を効率的に探索する必要がある。
第三に、売り手のステップごとの収益は未知であり、非線形であり、環境から直接観察することさえできない。
論文 参考訳(メタデータ) (2022-10-19T03:49:05Z) - An $α$-regret analysis of Adversarial Bilateral Trade [10.275531964940425]
我々は、売り手と買い手のバリュエーションが完全に任意であるシーケンシャルな二国間取引を調査する。
我々は、社会福祉よりも近づきにくい貿易からの利益を考えます。
論文 参考訳(メタデータ) (2022-10-13T08:57:30Z) - Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning [59.02006924867438]
オフ政治評価と学習(OPE/L)は、オフラインの観察データを使用してより良い意思決定を行う。
近年の研究では、分散ロバストなOPE/L (DROPE/L) が提案されているが、この提案は逆正則重み付けに依存している。
KL分散不確実性集合を用いたDROPE/Lの最初のDRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-19T20:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。