論文の概要: A Workbench for Autograding Retrieve/Generate Systems
- arxiv url: http://arxiv.org/abs/2405.13177v1
- Date: Tue, 21 May 2024 19:57:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 00:02:00.746954
- Title: A Workbench for Autograding Retrieve/Generate Systems
- Title(参考訳): 検索・生成システムの自動化のためのワークベンチ
- Authors: Laura Dietz,
- Abstract要約: 本稿では,自己回帰型大規模言語モデル(LLM)の時代における情報検索(IR)システム評価の課題について述べる。
我々は,LCMを組み込んだシステム応答の妥当性を判断するために,いくつかの代替評価手法を検討するためのワークベンチを提供する。
- 参考スコア(独自算出の注目度): 6.472434306724611
- License:
- Abstract: This resource paper addresses the challenge of evaluating Information Retrieval (IR) systems in the era of autoregressive Large Language Models (LLMs). Traditional methods relying on passage-level judgments are no longer effective due to the diversity of responses generated by LLM-based systems. We provide a workbench to explore several alternative evaluation approaches to judge the relevance of a system's response that incorporate LLMs: 1. Asking an LLM whether the response is relevant; 2. Asking the LLM which set of nuggets (i.e., relevant key facts) is covered in the response; 3. Asking the LLM to answer a set of exam questions with the response. This workbench aims to facilitate the development of new, reusable test collections. Researchers can manually refine sets of nuggets and exam questions, observing their impact on system evaluation and leaderboard rankings. Resource available at https://github.com/TREMA-UNH/autograding-workbench
- Abstract(参考訳): 本稿では,自己回帰型大規模言語モデル(LLM)の時代における情報検索(IR)システム評価の課題について述べる。
LLMに基づくシステムによって生成される応答の多様性のため、パスレベルの判断に依存する従来の手法は、もはや有効ではない。
LLMを組み込んだシステム応答の妥当性を判断するために、いくつかの代替評価手法を検討するためのワークベンチを提供する。
1. LLM に応答が適切かどうかを問うこと。
2) ナゲットの集合(すなわち関連する重要な事実)が応答にカバーされている LLM を尋ねること。
3 LLMに対し、一連の試験質問に回答するよう求めている。
このワークベンチは、新しい再利用可能なテストコレクションの開発を容易にすることを目的としている。
研究者は手動でナゲットや試験質問のセットを洗練し、システム評価やリーダーボードのランキングに与える影響を観察することができる。
https://github.com/TREMA-UNH/autograding-workbenchで利用可能なリソース
関連論文リスト
- Enhancing Answer Attribution for Faithful Text Generation with Large Language Models [5.065947993017158]
本稿では,より独立的で文脈的なクレームを生成できる新しい手法を提案する。
新しい手法が評価され,回答帰属成分の性能が向上することが示されている。
論文 参考訳(メタデータ) (2024-10-22T15:37:46Z) - Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation [19.312330150540912]
新たなアプリケーションは、Large Language Models(LLMs)を使用して、検索強化世代(RAG)機能を強化している。
FRAMESは,LLMが現実的な応答を提供する能力をテストするために設計された高品質な評価データセットである。
本稿では,最先端のLLMでもこの課題に対処し,0.40の精度で検索を行なわないことを示す。
論文 参考訳(メタデータ) (2024-09-19T17:52:07Z) - UnibucLLM: Harnessing LLMs for Automated Prediction of Item Difficulty and Response Time for Multiple-Choice Questions [25.877058354902953]
本研究は,BEA 2024共有タスクにおけるUSMLE多項目質問(MCQ)の項目難易度と応答時間を予測するために,LLM(Large Language Models)に基づく新しいデータ拡張手法を提案する。
我々のアプローチは、ゼロショットLLMからの回答をデータセットに拡張し、6つの代替機能の組み合わせに基づいてトランスフォーマーベースのモデルを採用することに基づいている。
論文 参考訳(メタデータ) (2024-04-20T10:41:02Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
大規模言語モデル(LLM)を用いたオープンドメイン質問応答(ODQA)の簡易かつ効果的なフレームワークを提案する。
SuRe は LLM が与えられた質問に対するより正確な回答を予測するのに役立つ。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
論文 参考訳(メタデータ) (2024-04-17T01:15:54Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Attributed Question Answering: Evaluation and Modeling for Attributed
Large Language Models [68.37431984231338]
大規模言語モデル(LLM)は、直接の監督をほとんど必要とせず、様々なタスクにわたって印象的な結果を示している。
我々は、LLMが生成するテキストの属性に持つ能力は、この設定においてシステム開発者とユーザの両方にとって不可欠であると信じている。
論文 参考訳(メタデータ) (2022-12-15T18:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。