論文の概要: Large Language Models are Good Spontaneous Multilingual Learners: Is the Multilingual Annotated Data Necessary?
- arxiv url: http://arxiv.org/abs/2405.13816v1
- Date: Wed, 22 May 2024 16:46:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:05:13.706100
- Title: Large Language Models are Good Spontaneous Multilingual Learners: Is the Multilingual Annotated Data Necessary?
- Title(参考訳): 大規模言語モデルは優れた自動多言語学習者である:多言語アノテーション付きデータは必要か?
- Authors: Shimao Zhang, Changjiang Gao, Wenhao Zhu, Jiajun Chen, Xin Huang, Xue Han, Junlan Feng, Chao Deng, Shujian Huang,
- Abstract要約: 大きな言語モデル(LLM)は印象的な言語機能を示している。
既存のLLMのほとんどは英語中心であり、様々な言語で非常に不安定で不均衡な性能を持つ。
- 参考スコア(独自算出の注目度): 67.85635044939836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Large Language Models (LLMs) have shown impressive language capabilities. However, most of the existing LLMs are all English-centric, which have very unstable and unbalanced performance across different languages. Multilingual alignment is an effective method to enhance the LLMs' multilingual capabilities. In this work, we explore the multilingual alignment paradigm which utilizes translation data and comprehensively investigate the spontaneous multilingual improvement of LLMs. We find that LLMs only instruction-tuned on question translation data without annotated answers are able to get significant multilingual performance enhancement even across a wide range of languages unseen during instruction-tuning. Additionally, we utilize different settings and mechanistic interpretability methods to comprehensively analyze the LLM's performance in the multilingual scenario.
- Abstract(参考訳): 最近、Large Language Models (LLMs) は印象的な言語機能を示している。
しかし、既存のLLMのほとんどは英語中心であり、様々な言語で非常に不安定で不均衡な性能を持つ。
多言語アライメントはLLMの多言語機能を強化する効果的な方法である。
本研究では、翻訳データを利用した多言語アライメントパラダイムについて検討し、LLMの自発的多言語改善を包括的に検討する。
注釈付き回答のない質問文翻訳データのみに基づくLLMは、命令調整中に見つからない幅広い言語であっても、多言語のパフォーマンスを著しく向上させることができることがわかった。
さらに,多言語シナリオにおけるLLMの性能を包括的に解析するために,異なる設定と機械的解釈可能性手法を利用する。
関連論文リスト
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Towards Truthful Multilingual Large Language Models: Benchmarking and Alignment Strategies [38.3269908062146]
多言語シナリオにおける真理性評価のためのベンチマークを構築する。
多数の言語にまたがるデータ割り当てを最適化するために,Fact-aware Multilingual Selective Synergy (FaMSS)を提案する。
論文 参考訳(メタデータ) (2024-06-20T15:59:07Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
大規模言語モデル (LLM) は多言語機能を示しているが、トレーニングコーパスの不均衡のため、主に英語中心である。
この作業は、NLPタスクから実際のユーザクエリまで、評価を拡張します。
深い言語理解を必要とする文化関連のタスクでは、ネイティブ言語のプロンプトがより有望になる傾向があります。
論文 参考訳(メタデータ) (2024-03-15T12:47:39Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
オープンソースの大規模言語モデル(LLM)は、様々な分野において大きな強みを持っている。
本研究では,オープンソースの多言語教師付き微調整データセットを構築する。
結果として得られたUltraLinkデータセットは、5つの言語にわたる約100万のサンプルで構成されている。
論文 参考訳(メタデータ) (2024-02-07T05:05:53Z) - How Vocabulary Sharing Facilitates Multilingualism in LLaMA? [19.136382859468693]
大きな言語モデル(LLM)は英語のタスクに強いパフォーマンスを示すが、他の言語には制限がある。
本研究では,語彙共有の観点からLLMの多言語的能力について検討する。
論文 参考訳(メタデータ) (2023-11-15T16:13:14Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
複数の言語を対象としたRLHFに基づく命令調整型LLMシステムであるOkapiを提案する。
オカピは26の多言語言語でインストラクションと応答ランクデータを導入し、将来の多言語LLM研究の促進と開発に役立てている。
論文 参考訳(メタデータ) (2023-07-29T18:01:46Z) - Breaking Language Barriers with a LEAP: Learning Strategies for Polyglot
LLMs [5.682384717239095]
大規模言語モデル(LLM)は、世界中の多くのドメインを変換する最前線にある。
本稿では,LLMの多言語性能向上のための命令的課題に取り組む。
ポリグロットランドスケープにおけるLLMの真のポテンシャルを解き放つ新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-28T14:48:38Z) - Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions [68.01449013641532]
大規模事前学習言語モデル(LLM)は多言語翻訳において強力な能力を示している。
本稿では,多言語事前学習言語モデルであるXGLM-7Bを微調整して,多言語翻訳を行う方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T12:00:24Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。