論文の概要: RoGS: Large Scale Road Surface Reconstruction based on 2D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2405.14342v2
- Date: Fri, 24 May 2024 03:38:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 12:41:46.124515
- Title: RoGS: Large Scale Road Surface Reconstruction based on 2D Gaussian Splatting
- Title(参考訳): RoGS:2次元ガウススプレイティングに基づく大規模道路表面再構成
- Authors: Zhiheng Feng, Wenhua Wu, Hesheng Wang,
- Abstract要約: 道路面の再建は自動運転において重要な役割を担っている。
本稿では,2次元ガウススプラッティング (2DGS) に基づく大規模道路表面再構成手法RoGSを提案する。
我々は,様々な挑戦的な現実のシーンにおける道路表面の再構築において,優れた成果を上げた。
- 参考スコア(独自算出の注目度): 11.471631481453715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road surface reconstruction plays a crucial role in autonomous driving, which can be used for road lane perception and autolabeling tasks. Recently, mesh-based road surface reconstruction algorithms show promising reconstruction results. However, these mesh-based methods suffer from slow speed and poor rendering quality. In contrast, the 3D Gaussian Splatting (3DGS) shows superior rendering speed and quality. Although 3DGS employs explicit Gaussian spheres to represent the scene, it lacks the ability to directly represent the geometric information of the scene. To address this limitation, we propose a novel large-scale road surface reconstruction approach based on 2D Gaussian Splatting (2DGS), named RoGS. The geometric shape of the road is explicitly represented using 2D Gaussian surfels, where each surfel stores color, semantics, and geometric information. Compared to Gaussian spheres, the Gaussian surfels aligns more closely with the physical reality of the road. Distinct from previous initialization methods that rely on point clouds for Gaussian spheres, we introduce a trajectory-based initialization for Gaussian surfels. Thanks to the explicit representation of the Gaussian surfels and a good initialization, our method achieves a significant acceleration while improving reconstruction quality. We achieve excellent results in reconstruction of roads surfaces in a variety of challenging real-world scenes.
- Abstract(参考訳): 道路路面の再構築は、道路路面の認識や自動標識作業に使用できる自動運転において重要な役割を担っている。
近年,メッシュを用いた道路表面再構成アルゴリズムは,有望な再建結果を示している。
しかしながら、これらのメッシュベースの手法は、遅いスピードとレンダリング品質の低下に悩まされている。
対照的に、3D Gaussian Splatting (3DGS)はレンダリング速度と品質が優れている。
3DGSはシーンを表現するために明示的なガウス球を用いるが、シーンの幾何学的情報を直接表現する能力は欠如している。
この制限に対処するために,2次元ガウススプラッティング (2DGS) に基づく大規模道路表面再構築手法RoGSを提案する。
道路の幾何学的形状は2Dガウス波で明確に表現され、各波路は色、意味、幾何学的情報を格納する。
ガウスの球と比べれば、ガウスの波は道路の物理的現実とより密接に一致している。
ガウス球面の点雲に依存する従来の初期化法とは違い,ガウス球面の軌道に基づく初期化を導入する。
ガウス波の明示的な表現と優れた初期化により,本手法は再構築品質を向上しつつ,大幅な加速を実現している。
我々は,様々な挑戦的な現実のシーンにおける道路表面の再構築において,優れた成果を上げた。
関連論文リスト
- CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本稿では,現在のアプローチよりも優れた空間感性プルーニングスコアを提案する。
また,事前学習した任意の3D-GSモデルに適用可能なマルチラウンドプルーファインパイプラインを提案する。
我々のパイプラインは、3D-GSの平均レンダリング速度を2.65$times$で増加させ、より健全なフォアグラウンド情報を保持します。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction [37.14913599050765]
高忠実表面再構成を実現するために,高速平面型ガウススプラッティング再構成表現(PGSR)を提案する。
次に、大域的幾何精度を維持するために、一視点幾何、多視点測光、幾何正則化を導入する。
提案手法は3DGS法およびNeRF法よりも優れた高忠実度レンダリングと幾何再構成を維持しつつ,高速なトレーニングとレンダリングを実現する。
論文 参考訳(メタデータ) (2024-06-10T17:59:01Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - SA-GS: Semantic-Aware Gaussian Splatting for Large Scene Reconstruction with Geometry Constrain [43.80789481557894]
セマンティック・アウェアな3Dガウス・スプラットを用いた細粒度3次元幾何再構成のためのSA-GSという新しい手法を提案する。
我々はSAMやDINOのような大きな視覚モデルに格納された事前情報を利用してセマンティックマスクを生成する。
我々は,新しい確率密度に基づく抽出法を用いて点雲を抽出し,ガウススプラッツを下流タスクに不可欠な点雲に変換する。
論文 参考訳(メタデータ) (2024-05-27T08:15:10Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
本稿では,3次元ガウススプラッティングから高精細な表面を復元する神経暗黙的表面再構成パイプラインを提案する。
3Dガウススプラッティングの利点は、詳細な構造を持つ高密度の点雲を生成することができることである。
我々は3次元ガウスを極端に薄くすることで、表面に近い中心を引っ張るスケール正則化器を導入する。
論文 参考訳(メタデータ) (2023-12-01T07:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。