Fast Bayesian Inference for Neutrino Non-Standard Interactions at Dark Matter Direct Detection Experiments
- URL: http://arxiv.org/abs/2405.14932v2
- Date: Thu, 20 Feb 2025 17:41:47 GMT
- Title: Fast Bayesian Inference for Neutrino Non-Standard Interactions at Dark Matter Direct Detection Experiments
- Authors: Dorian W. P. Amaral, Shixiao Liang, Juehang Qin, Christopher Tunnell,
- Abstract summary: Multi-dimensional parameter spaces are commonly encountered in physics theories that go beyond the Standard Model.
Recent innovations have made navigating such complex posteriors possible.
We apply these advancements to dark matter direct detection experiments in the context of non-standard neutrino interactions.
- Score: 0.0
- License:
- Abstract: Multi-dimensional parameter spaces are commonly encountered in physics theories that go beyond the Standard Model. However, they often possess complicated posterior geometries that are expensive to traverse using techniques traditional to astroparticle physics. Several recent innovations, which are only beginning to make their way into this field, have made navigating such complex posteriors possible. These include GPU acceleration, automatic differentiation, and neural-network-guided reparameterization. We apply these advancements to dark matter direct detection experiments in the context of non-standard neutrino interactions and benchmark their performances against traditional nested sampling techniques when conducting Bayesian inference. Compared to nested sampling alone, we find that these techniques increase performance for both nested sampling and Hamiltonian Monte Carlo, accelerating inference by factors of $\sim 100$ and $\sim 60$, respectively. As nested sampling also evaluates the Bayesian evidence, these advancements can be exploited to improve model comparison performance while retaining compatibility with existing implementations that are widely used in the natural sciences. Using these techniques, we perform the first scan in the neutrino non-standard interactions parameter space for direct detection experiments whereby all parameters are allowed to vary simultaneously. We expect that these advancements are broadly applicable to other areas of astroparticle physics featuring multi-dimensional parameter spaces.
Related papers
- A comparison of Bayesian sampling algorithms for high-dimensional particle physics and cosmology applications [0.0]
We review and compare a wide range of Markov Chain Monte Carlo (MCMC) and nested sampling techniques.
We show that several examples widely thought to be most easily solved using nested sampling approaches can in fact be more efficiently solved using modern MCMC algorithms.
arXiv Detail & Related papers (2024-09-27T05:57:48Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Cascaded Multiparameter Quantum Metrology [0.0]
We show that squeezing can give a quantum enhancement in sensitivity over that of classical states by a factor of $e2r$, where $r approx 1$ is the squeezing parameter.
We have modeled an interferometer that senses multiple phase shifts along the same path, demonstrating a maximal quantum advantage by combining a coherent state with squeezed vacuum.
arXiv Detail & Related papers (2023-04-17T18:22:48Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Interpretable Joint Event-Particle Reconstruction for Neutrino Physics
at NOvA with Sparse CNNs and Transformers [124.29621071934693]
We present a novel neural network architecture that combines the spatial learning enabled by convolutions with the contextual learning enabled by attention.
TransformerCVN simultaneously classifies each event and reconstructs every individual particle's identity.
This architecture enables us to perform several interpretability studies which provide insights into the network's predictions.
arXiv Detail & Related papers (2023-03-10T20:36:23Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Arbitrary Marginal Neural Ratio Estimation for Simulation-based
Inference [7.888755225607877]
We present a novel method that enables amortized inference over arbitrary subsets of the parameters, without resorting to numerical integration.
We demonstrate the applicability of the method on parameter inference of binary black hole systems from gravitational waves observations.
arXiv Detail & Related papers (2021-10-01T14:35:46Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Continuous normalizing flows on manifolds [0.342658286826597]
We describe how the recently introduced Neural ODEs and continuous normalizing flows can be extended to arbitrary smooth manifold.
We propose a general methodology for parameterizing vector fields on these spaces and demonstrate how gradient-based learning can be performed.
arXiv Detail & Related papers (2021-03-14T15:35:19Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA)
In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field.
We show that the new method class has characteristics not found in previous alignment methods.
arXiv Detail & Related papers (2020-09-28T15:05:39Z) - A quantum algorithm for model independent searches for new physics [0.0]
We propose a novel quantum technique to search for unmodelled anomalies in multi-dimensional binned collider data.
We associate an Ising lattice spin site with each bin, with the Ising Hamiltonian suitably constructed from the observed data.
In order to capture spatially correlated anomalies in the data, we introduce spin-spin interactions between neighboring sites.
arXiv Detail & Related papers (2020-03-04T16:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.