論文の概要: Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
- arxiv url: http://arxiv.org/abs/2405.15459v1
- Date: Fri, 24 May 2024 11:34:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:42:18.404577
- Title: Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
- Title(参考訳): Repetita Iuvant: SGDで高次元マルチインデックス関数を学習できるデータ繰り返し
- Authors: Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, Ludovic Stephan,
- Abstract要約: 勾配に基づくアルゴリズムを用いて学習した2層浅層ニューラルネットワークのトレーニング力学について検討する。
理想化シングルパス勾配勾配学習シナリオの簡単な修正により,その計算効率が大幅に向上することを示す。
この結果から,ネットワークが事前処理なしでデータから関連構造を学習できることが示唆された。
- 参考スコア(独自算出の注目度): 20.036783417617652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks can identify low-dimensional relevant structures within high-dimensional noisy data, yet our mathematical understanding of how they do so remains scarce. Here, we investigate the training dynamics of two-layer shallow neural networks trained with gradient-based algorithms, and discuss how they learn pertinent features in multi-index models, that is target functions with low-dimensional relevant directions. In the high-dimensional regime, where the input dimension $d$ diverges, we show that a simple modification of the idealized single-pass gradient descent training scenario, where data can now be repeated or iterated upon twice, drastically improves its computational efficiency. In particular, it surpasses the limitations previously believed to be dictated by the Information and Leap exponents associated with the target function to be learned. Our results highlight the ability of networks to learn relevant structures from data alone without any pre-processing. More precisely, we show that (almost) all directions are learned with at most $O(d \log d)$ steps. Among the exceptions is a set of hard functions that includes sparse parities. In the presence of coupling between directions, however, these can be learned sequentially through a hierarchical mechanism that generalizes the notion of staircase functions. Our results are proven by a rigorous study of the evolution of the relevant statistics for high-dimensional dynamics.
- Abstract(参考訳): ニューラルネットワークは、高次元ノイズデータの中で低次元の関連構造を識別することができるが、その方法に関する数学的理解は乏しいままである。
本稿では,勾配に基づくアルゴリズムを用いて学習した2層浅層ニューラルネットワークのトレーニング力学について検討し,低次元な対象関数であるマルチインデックスモデルにおいて,関連する特徴を学習する方法について考察する。
入力次元が$d$のばらつきがある高次元のシステムでは、理想化された単一パス勾配勾配降下訓練シナリオの簡単な修正が行われ、データの繰り返しや反復が2回可能になったことにより、計算効率が大幅に向上する。
特に、学習対象関数に関連するインフォメーション・アンド・プループ・インフォメーション・インフォメーション・インフォメーション・インフォメーション・アンド・プループ・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・アンド・プループ・インフォメーション・インフォメーション(Information and Leap Exponents)によって規定された制限を超える。
この結果から,ネットワークが事前処理なしでデータから関連構造を学習できることが明らかになった。
より正確には、(ほとんど)すべての方向は、少なくとも$O(d \log d)$のステップで学習されることを示す。
例外として、スパースパリティを含むハード関数の集合がある。
しかし、方向のカップリングの存在下では、階段関数の概念を一般化する階層的なメカニズムによってこれらを逐次学習することができる。
この結果は、高次元力学に関する関連する統計の進化に関する厳密な研究によって証明されている。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks [13.983863226803336]
我々は「機能平均化」がディープニューラルネットワークの非ロバスト性に寄与する主要な要因の1つであると論じる。
二層分類タスクのための2層ReLUネットワークにおいて、勾配降下のトレーニング力学を詳細に理論的に解析する。
よりきめ細かい教師付き情報を提供することで、2層多層ニューラルネットワークが個々の特徴を学習できることを実証する。
論文 参考訳(メタデータ) (2024-10-14T09:28:32Z) - Nonlinear functional regression by functional deep neural network with
kernel embedding [20.306390874610635]
本稿では,効率的かつ完全なデータ依存型次元減少法を備えた機能的ディープニューラルネットワークを提案する。
機能ネットのアーキテクチャは、カーネル埋め込みステップ、プロジェクションステップ、予測のための深いReLUニューラルネットワークで構成される。
スムーズなカーネル埋め込みを利用することで、我々の関数ネットは離散化不変であり、効率的で、頑健でノイズの多い観測が可能となる。
論文 参考訳(メタデータ) (2024-01-05T16:43:39Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
特徴埋め込み空間のトポロジがベッチ数を介してよく訓練されたディープニューラルネットワーク(DNN)の層を通過するとき、どのように変化するかを検討する。
深度が増加するにつれて、トポロジカルに複雑なデータセットが単純なデータセットに変換され、ベッチ数はその最小値に達することが示される。
論文 参考訳(メタデータ) (2023-11-08T10:45:12Z) - A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks [43.281323350357404]
機能学習は、ディープニューラルネットワークの成功の根本的な理由の1つであると考えられている。
サンプルサイズとともに成長する学習率によって、このようなトレーニングが実際に複数のランクワンコンポーネントを導入していることを示す。
論文 参考訳(メタデータ) (2023-10-11T20:55:02Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
この原稿は、2層以上の深さのニューラルネットワークによって学習された関数の性質が予測にどのように影響するかを考察している。
我々のフレームワークは、すべて同じキャパシティを持つが表現コストが異なる、様々な深さのネットワーク群を考慮に入れている。
論文 参考訳(メタデータ) (2023-05-24T22:10:12Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
一般化誤差の「二重降下」現象について検討する。
二重降下は、異なるスケールで学習される異なる特徴に起因する可能性がある。
論文 参考訳(メタデータ) (2021-12-06T18:17:08Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。