論文の概要: Do Code LLMs Understand Design Patterns?
- arxiv url: http://arxiv.org/abs/2501.04835v1
- Date: Wed, 08 Jan 2025 20:39:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:49.508932
- Title: Do Code LLMs Understand Design Patterns?
- Title(参考訳): コードLLMはデザインパターンを理解するか?
- Authors: Zhenyu Pan, Xuefeng Song, Yunkun Wang, Rongyu Cao, Binhua Li, Yongbin Li, Han Liu,
- Abstract要約: ソフトウェア開発におけるコードLLMのバイアスを実証的に調査する。
その結果,Code LLMのバイアスが下流タスクの信頼性に大きく影響していることが判明した。
- 参考スコア(独自算出の注目度): 45.89136944351375
- License:
- Abstract: Code Large Language Models (LLMs) demonstrate great versatility in adapting to various downstream tasks, including code generation and completion, as well as bug detection and fixing. However, Code LLMs often fail to capture existing coding standards, leading to the generation of code that conflicts with the required design patterns for a given project. As a result, developers must post-process to adapt the generated code to the project's design norms. In this work, we empirically investigate the biases of Code LLMs in software development. Through carefully designed experiments, we assess the models' understanding of design patterns across recognition, comprehension, and generation. Our findings reveal that biases in Code LLMs significantly affect the reliability of downstream tasks.
- Abstract(参考訳): コード大言語モデル(LLM)は、コード生成や完了、バグ検出や修正など、さまざまな下流タスクに適応する上で、非常に汎用性を示している。
しかし、コードLLMは、しばしば既存のコーディング標準を捉えることができず、あるプロジェクトに必要な設計パターンと矛盾するコードを生成する。
結果として、開発者は生成したコードをプロジェクトの設計規範に適応するために後処理をしなければならない。
本研究では,ソフトウェア開発におけるコードLLMのバイアスを実証的に調査する。
慎重に設計された実験を通して、認識、理解、生成にまたがるデザインパターンに対するモデルの理解を評価する。
その結果,Code LLMのバイアスが下流タスクの信頼性に大きく影響していることが判明した。
関連論文リスト
- Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
大規模言語モデル(LLM)は、コード生成において顕著なブレークスルーを示している。
最近の研究は、いくつかの強力なLLMによって生成された合成データをトレーニングすることで、コードLLMを改善している。
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - An Empirical Study on Capability of Large Language Models in Understanding Code Semantics [4.638578225024275]
コードのための大規模言語モデル(コードLLM)は、様々なソフトウェア工学(SE)タスクで顕著なパフォーマンスを示している。
本稿では,コード意味論の理解におけるLLMの能力を評価するためのフレームワークであるEMPICAを紹介する。
論文 参考訳(メタデータ) (2024-07-04T03:40:58Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
大規模言語モデル(LLM)は、様々なコード関連のタスクで顕著な進歩を遂げています。
本調査は、総合的かつ最新の文献レビューを提供することで、学界と実践的発展のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T17:48:15Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - A Study on Developer Behaviors for Validating and Repairing LLM-Generated Code Using Eye Tracking and IDE Actions [13.58143103712]
GitHub Copilotは、LLM(Big Language Model)ベースのコード生成ツールである。
本稿では,Copilotが生成したコードを開発者がどのように検証し,修復するかを検討する。
コードの存在を認識したことにより、パフォーマンスの向上、検索努力の向上、コパイロットの使用頻度の向上、認知作業負荷の向上につながった。
論文 参考訳(メタデータ) (2024-05-25T06:20:01Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Do Large Language Models Pay Similar Attention Like Human Programmers When Generating Code? [10.249771123421432]
我々は,Large Language Models (LLMs) が,コード生成中に人間のプログラマと同じタスク記述に係わるかどうかを検討する。
手動で211の間違ったコードスニペットを分析し、多くのコード生成エラーを説明するのに使える5つの注意パターンを見つけました。
この結果から,人間によるLLMの理解性向上とプログラマの信頼度向上の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2023-06-02T00:57:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。