Limits of Deep Learning: Sequence Modeling through the Lens of Complexity Theory
- URL: http://arxiv.org/abs/2405.16674v2
- Date: Fri, 04 Oct 2024 21:57:16 GMT
- Title: Limits of Deep Learning: Sequence Modeling through the Lens of Complexity Theory
- Authors: Nikola Zubić, Federico Soldá, Aurelio Sulser, Davide Scaramuzza,
- Abstract summary: Despite their successes, deep learning models struggle with tasks requiring complex reasoning and function composition.
We present a theoretical and empirical investigation into the limitations of Structured State Space Models (SSMs) and Transformers in such tasks.
We highlight the need for innovative solutions to achieve reliable multi-step reasoning and compositional task-solving.
- Score: 15.24542569393982
- License:
- Abstract: Despite their successes, deep learning models struggle with tasks requiring complex reasoning and function composition. We present a theoretical and empirical investigation into the limitations of Structured State Space Models (SSMs) and Transformers in such tasks. We prove that one-layer SSMs cannot efficiently perform function composition over large domains without impractically large state sizes, and even with Chain-of-Thought prompting, they require a number of steps that scale unfavorably with the complexity of the function composition. Multi-layer SSMs are constrained by log-space computational capacity, limiting their reasoning abilities. Our experiments corroborate these theoretical findings. Evaluating models on tasks including various function composition settings, multi-digit multiplication, dynamic programming, and Einstein's puzzle, we find significant performance degradation even with advanced prompting techniques. Models often resort to shortcuts, leading to compounding errors. These findings highlight fundamental barriers within current deep learning architectures rooted in their computational capacities. We underscore the need for innovative solutions to transcend these constraints and achieve reliable multi-step reasoning and compositional task-solving, which is critical for advancing toward general artificial intelligence.
Related papers
- Supervised Chain of Thought [5.389461633686935]
Chain of Thought (CoT) prompting offers a promising approach to solving complex reasoning tasks.
One-prompt-for-all approach poses significant challenges for models to generate the correct reasoning steps.
We show how task-specific supervision is essential for navigating the prompt space accurately and achieving optimal performance.
arXiv Detail & Related papers (2024-10-18T06:25:27Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Do Large Language Models Have Compositional Ability? An Investigation into Limitations and Scalability [12.349247962800813]
Large language models (LLMs) have emerged as powerful tools for many AI problems.
They exhibit remarkable in-context learning (ICL) capabilities.
How they approach composite tasks remains an open and largely underexplored question.
arXiv Detail & Related papers (2024-07-22T15:22:34Z) - A Notion of Complexity for Theory of Mind via Discrete World Models [2.487142846438629]
Theory of Mind (ToM) can be used to assess the capabilities of Large Language Models (LLMs) in complex scenarios where social reasoning is required.
This work proposes a framework inspired by cognitive load theory to measure the complexity of ToM tasks.
arXiv Detail & Related papers (2024-06-16T16:46:55Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Parrot Mind: Towards Explaining the Complex Task Reasoning of Pretrained Large Language Models with Template-Content Structure [66.33623392497599]
We show that a structure called template-content structure (T-C structure) can reduce the possible space from exponential level to linear level.
We demonstrate that models can achieve task composition, further reducing the space needed to learn from linear to logarithmic.
arXiv Detail & Related papers (2023-10-09T06:57:45Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - Faith and Fate: Limits of Transformers on Compositionality [109.79516190693415]
We investigate the limits of transformer large language models across three representative compositional tasks.
These tasks require breaking problems down into sub-steps and synthesizing these steps into a precise answer.
Our empirical findings suggest that transformer LLMs solve compositional tasks by reducing multi-step compositional reasoning into linearized subgraph matching.
arXiv Detail & Related papers (2023-05-29T23:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.