論文の概要: Triple Preference Optimization: Achieving Better Alignment with Less Data in a Single Step Optimization
- arxiv url: http://arxiv.org/abs/2405.16681v1
- Date: Sun, 26 May 2024 20:18:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 19:48:31.496029
- Title: Triple Preference Optimization: Achieving Better Alignment with Less Data in a Single Step Optimization
- Title(参考訳): Triple Preference Optimization: 単一ステップ最適化におけるデータ少ないアライメントの達成
- Authors: Amir Saeidi, Shivanshu Verma, Aswin RRV, Chitta Baral,
- Abstract要約: Triple Preference Optimization (TPO) は、大きめの言語モデルと3つの好みを、別個のSupervised Fine-Tuned (SFT)モデルを必要とせずに整合させるように設計されている。
TPOは,SFT,DPO,KTO,IPO,CPO,ORPOといった他の手法によるモデルと比較して,優れた結果が得られることを示す。
- 参考スコア(独自算出の注目度): 35.36615140853107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) perform well across diverse tasks, but aligning them with human demonstrations is challenging. Recently, Reinforcement Learning (RL)-free methods like Direct Preference Optimization (DPO) have emerged, offering improved stability and scalability while retaining competitive performance relative to RL-based methods. However, while RL-free methods deliver satisfactory performance, they require significant data to develop a robust Supervised Fine-Tuned (SFT) model and an additional step to fine-tune this model on a preference dataset, which constrains their utility and scalability. In this paper, we introduce Triple Preference Optimization (TPO), a new preference learning method designed to align an LLM with three preferences without requiring a separate SFT step and using considerably less data. Through a combination of practical experiments and theoretical analysis, we show the efficacy of TPO as a single-step alignment strategy. Specifically, we fine-tuned the Phi-2 (2.7B) and Mistral (7B) models using TPO directly on the UltraFeedback dataset, achieving superior results compared to models aligned through other methods such as SFT, DPO, KTO, IPO, CPO, and ORPO. Moreover, the performance of TPO without the SFT component led to notable improvements in the MT-Bench score, with increases of +1.27 and +0.63 over SFT and DPO, respectively. Additionally, TPO showed higher average accuracy, surpassing DPO and SFT by 4.2% and 4.97% on the Open LLM Leaderboard benchmarks. Our code is publicly available at https://github.com/sahsaeedi/triple-preference-optimization .
- Abstract(参考訳): 大きな言語モデル(LLM)は様々なタスクでうまく機能しますが、それらを人間のデモと整合させることは難しいです。
近年,DPO(Direct Preference Optimization)のような強化学習(Reinforcement Learning, RL)のない手法が登場し, 安定性とスケーラビリティが向上した。
しかし、RLフリーな手法は良好な性能を提供するが、堅牢なSupervised Fine-Tuned (SFT)モデルを開発するためにはかなりのデータが必要である。
本稿では,異なるSFTステップを必要とせず,より少ないデータを使用することなく,LLMを3つの選好に整合させる新しい選好学習手法であるトリプル選好最適化(TPO)を提案する。
実用実験と理論的解析を組み合わせることで,TPOを単一段階のアライメント戦略として有効性を示す。
具体的には,TPOをUltraFeedbackデータセットに直接使用したPhi-2 (2.7B) とMistral (7B) モデルを微調整し,SFT,DPO,KTO,IPO,CPO,ORPOなどの他の手法で整列したモデルと比較して,優れた結果を得た。
さらに、SFT成分を含まないTPOの性能は、MT-Benchスコアに顕著な改善をもたらし、それぞれSFTとDPOに対して+1.27と+0.63が増加した。
さらにTPOは平均精度が高く、Open LLM LeaderboardベンチマークではDPOとSFTを4.2%、SFTは4.97%上回った。
私たちのコードはhttps://github.com/sahsaeedi/triple-preference-timization で公開されています。
関連論文リスト
- Less is More: Improving LLM Alignment via Preference Data Selection [46.9163802899686]
DPO(Direct Preference Optimization)は,大規模言語モデルと人間の嗜好を整合させる,有望なアプローチである。
DPOトレーニングにおけるデータセットキュレーションのための新たなマージン最大化原理を提案する。
Ultrafeedbackデータセットの10%しか使用せず、様々なLlamaおよびMistralシリーズモデルに対して3%から8%の改善を実現しています。
論文 参考訳(メタデータ) (2025-02-20T13:45:17Z) - Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
我々は、イテレーション間で一貫した改善を保証するために、動的ノイズ優先最適化(DNPO)を導入します。
Zephyr-7Bでの実験では、DNPOは既存の手法を一貫して上回り、平均性能は2.6%向上した。
DNPOは、GPT-4評価のベースラインに比べて29.4%のウィンロス率差で、モデル生成データの品質が大幅に向上したことを示している。
論文 参考訳(メタデータ) (2025-02-08T01:20:09Z) - FocalPO: Enhancing Preference Optimizing by Focusing on Correct Preference Rankings [40.605411087380226]
我々は、モデルがすでに正しくランク付けできるようなペアの理解を高めることを優先するDPO変種であるFocalPOを紹介した。
視覚タスクで使用されるFocal LossにインスパイアされたFocalPOは、動的にDPO損失をスケールするために変調係数を追加することでこれを達成している。
論文 参考訳(メタデータ) (2025-01-11T21:41:27Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
我々は、優先不確実性ペナル化スキームを導入し、DPOの悲観的な枠組みを開発する。
ペナル化は、不確実なサンプルの損失勾配を減衰させる損失の補正として機能する。
我々は,バニラDPOと比較して全体的な性能が向上し,高い不確実性選択/拒絶反応によるプロンプトの完成度も向上した。
論文 参考訳(メタデータ) (2024-10-26T14:24:37Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) は、大きな言語モデル(LLM)を人間の好みに合わせるための重要なツールとして登場した。
直接選好最適化(DPO)は、報酬関数を明示的に見積もることなく、ポリシー最適化問題としてRLHFを定式化する。
本稿では,既存の最適化アルゴリズムを統一したAPO(Accelerated Preference Optimization)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-08T18:51:01Z) - TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights [73.9088920210495]
本稿では,TIS-DPO と呼ばれるトークン単位の重要度サンプリング DPO の目的について,その報酬に基づいて各トークンに重要度を割り当てる手法を提案する。
TIS-DPOは、無害性、有用性アライメントおよび要約タスクにおいて、様々なベースライン手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-10-06T04:03:00Z) - Length Desensitization in Direct Preference Optimization [26.664176443756773]
DPOは冗長性に対して過度に最適化される傾向があり、パフォーマンスとユーザエクスペリエンスの両方に有害に影響を及ぼす可能性がある。
LD-DPO(LD-DPO)と呼ばれるDPOの時間依存性改善手法を提案する。
提案手法は,他の暗黙の選好から比較的重要でない明示的な長さ選好を分離することにより,DPOをデータ長に脱感化することを目的としている。
論文 参考訳(メタデータ) (2024-09-10T10:49:38Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
本稿では,Step-DPOと呼ばれるシンプルで効果的でデータ効率のよい手法を提案する。
Step-DPOは、個々の推論ステップを、論理的に回答を評価するのではなく、優先最適化の単位として扱う。
以上の結果から,70B パラメータ以上のモデルでは,10K の選好データペアと500 Step-DPO トレーニングステップ以下では,MATH の精度が約3%向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-26T17:43:06Z) - 3D-Properties: Identifying Challenges in DPO and Charting a Path Forward [17.27880657597116]
我々はDPOを再考し、その理論的基礎と経験的性能を分析した。
DPOの学習過程から生じる3つの重要な特性、いわゆる3D特性を同定する。
トレーニングの安定性と性能を向上させるための簡単な正規化手法を提案する。
論文 参考訳(メタデータ) (2024-06-11T14:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。