論文の概要: Evaluation of Multi-task Uncertainties in Joint Semantic Segmentation and Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2405.17097v1
- Date: Mon, 27 May 2024 12:12:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 15:32:42.539121
- Title: Evaluation of Multi-task Uncertainties in Joint Semantic Segmentation and Monocular Depth Estimation
- Title(参考訳): 関節セマンティックセグメンテーションと単眼深度推定におけるマルチタスク不確かさの評価
- Authors: Steven Landgraf, Markus Hillemann, Theodor Kapler, Markus Ulrich,
- Abstract要約: マルチタスク学習が不確実性推定の質にどのように影響するかを,両タスクを別々に解くのと比較して検討した。
マルチタスク学習は,両タスクを別々に解くことに比べ,不確実性推定の品質に影響を及ぼすことがわかった。
- 参考スコア(独自算出の注目度): 9.52671061354338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While a number of promising uncertainty quantification methods have been proposed to address the prevailing shortcomings of deep neural networks like overconfidence and lack of explainability, quantifying predictive uncertainties in the context of joint semantic segmentation and monocular depth estimation has not been explored yet. Since many real-world applications are multi-modal in nature and, hence, have the potential to benefit from multi-task learning, this is a substantial gap in current literature. To this end, we conduct a comprehensive series of experiments to study how multi-task learning influences the quality of uncertainty estimates in comparison to solving both tasks separately.
- Abstract(参考訳): 多くの有望な不確実性定量化手法が提案され、過信や説明可能性の欠如といったディープニューラルネットワークの欠点に対処しているが、関節意味的セグメンテーションや単眼深度推定の文脈における予測的不確かさの定量化はまだ検討されていない。
多くの現実世界のアプリケーションは本質的にマルチモーダルであるため、マルチタスク学習の恩恵を受ける可能性があるため、現在の文献では大きなギャップがある。
この目的のために,マルチタスク学習が両タスクを個別に解くことと比較して,不確実性推定の品質にどのように影響するかを総合的に検討する。
関連論文リスト
- A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL)は、単一のフォワードパスで最小限の追加計算で信頼性の高い不確実性推定を提供する。
まず、主観的論理理論であるEDLの理論的基礎を掘り下げ、他の不確実性推定フレームワークとの区別について議論する。
さまざまな機械学習パラダイムや下流タスクにまたがる広範な応用について詳しく述べる。
論文 参考訳(メタデータ) (2024-09-07T05:55:06Z) - Efficient Multi-task Uncertainties for Joint Semantic Segmentation and
Monocular Depth Estimation [10.220692937750295]
多くの実世界のアプリケーションは本質的にマルチモーダルであり、そのためマルチタスク学習の恩恵を受ける。
例えば、自律運転では、セマンティックセグメンテーションと単分子深度推定のジョイントソリューションが有用であることが証明されている。
共同セマンティックセグメンテーションと単眼深度推定のための新しい学生-教師蒸留手法であるEMUFormerを紹介する。
論文 参考訳(メタデータ) (2024-02-16T11:09:16Z) - Uncertainty in Natural Language Processing: Sources, Quantification, and
Applications [56.130945359053776]
NLP分野における不確実性関連作業の総合的なレビューを行う。
まず、自然言語の不確実性の原因を、入力、システム、出力の3つのタイプに分類する。
我々は,NLPにおける不確実性推定の課題について論じ,今後の方向性について論じる。
論文 参考訳(メタデータ) (2023-06-05T06:46:53Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Introduction and Exemplars of Uncertainty Decomposition [3.0349501539299686]
不確実性は、機械学習分野において重要な役割を果たす。
本報告は,2種類の不確かさといくつかの分解例を紹介することによって,不確実性分解の概念を確定することを目的としている。
論文 参考訳(メタデータ) (2022-11-17T17:14:34Z) - Quantitative performance evaluation of Bayesian neural networks [0.0]
ディープラーニングの不確実性に関する訴訟が増えているにもかかわらず、不確実性推定の品質は未解決の問題のままである。
本研究では,サンプリングタスクと回帰タスクにおける複数のアルゴリズムの性能評価を試みる。
論文 参考訳(メタデータ) (2022-06-08T06:56:50Z) - On the Minimal Adversarial Perturbation for Deep Neural Networks with
Provable Estimation Error [65.51757376525798]
敵の摂動の存在は、証明可能な堅牢性に関する興味深い研究ラインを開いた。
検証可能な結果は、コミットしたエラーを見積り、バウンドするものではない。
本稿では,最小対向摂動を求めるための2つの軽量戦略を提案する。
その結果, 提案手法は, 分類に近い試料の理論的距離とロバスト性を近似し, 敵攻撃に対する確実な保証が得られた。
論文 参考訳(メタデータ) (2022-01-04T16:40:03Z) - Ensemble-based Uncertainty Quantification: Bayesian versus Credal
Inference [0.0]
我々は、不確実性定量化に対するアンサンブルに基づくアプローチを検討する。
具体的には,いわゆる干潟集合に基づくベイズ的手法とアプローチに着目する。
拒否オプションを用いた分類に関する実証的研究において, 対応する尺度の有効性を評価し, 比較した。
論文 参考訳(メタデータ) (2021-07-21T22:47:24Z) - On the uncertainty of self-supervised monocular depth estimation [52.13311094743952]
単眼深度推定のための自己監督的パラダイムは、基礎的な真理アノテーションを全く必要としないため、非常に魅力的である。
我々は,このタスクの不確かさを推定する方法と,これが深さ精度にどのように影響するかを初めて検討する。
自己教師型アプローチに特化して設計された,斬新な手法を提案する。
論文 参考訳(メタデータ) (2020-05-13T09:00:55Z) - Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
Learning [70.72363097550483]
本研究では,画像分類における領域内不確実性に着目した。
そこで本研究では,ディープアンサンブル等価スコア(DEE)を導入する。
論文 参考訳(メタデータ) (2020-02-15T23:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。