Physics-Informed Real NVP for Satellite Power System Fault Detection
- URL: http://arxiv.org/abs/2405.17339v1
- Date: Mon, 27 May 2024 16:42:51 GMT
- Title: Physics-Informed Real NVP for Satellite Power System Fault Detection
- Authors: Carlo Cena, Umberto Albertin, Mauro Martini, Silvia Bucci, Marcello Chiaberge,
- Abstract summary: This paper proposes an Artificial Intelligence (AI) based fault detection methodology and evaluates its performance on ADAPT dataset.
Our study focuses on the application of a physics-informed (PI) real-valued non-volume preserving (Real NVP) model for fault detection in space systems.
Results show that our physics-informed approach outperforms existing methods of fault detection, demonstrating its suitability for addressing the challenges of satellite EPS sub-system faults.
- Score: 3.3694176886084803
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The unique challenges posed by the space environment, characterized by extreme conditions and limited accessibility, raise the need for robust and reliable techniques to identify and prevent satellite faults. Fault detection methods in the space sector are required to ensure mission success and to protect valuable assets. In this context, this paper proposes an Artificial Intelligence (AI) based fault detection methodology and evaluates its performance on ADAPT (Advanced Diagnostics and Prognostics Testbed), an Electrical Power System (EPS) dataset, crafted in laboratory by NASA. Our study focuses on the application of a physics-informed (PI) real-valued non-volume preserving (Real NVP) model for fault detection in space systems. The efficacy of this method is systematically compared against other AI approaches such as Gated Recurrent Unit (GRU) and Autoencoder-based techniques. Results show that our physics-informed approach outperforms existing methods of fault detection, demonstrating its suitability for addressing the unique challenges of satellite EPS sub-system faults. Furthermore, we unveil the competitive advantage of physics-informed loss in AI models to address specific space needs, namely robustness, reliability, and power constraints, crucial for space exploration and satellite missions.
Related papers
- Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft.
A multi-channel Convolutional Neural Network (CNN) is used to perform multi-target classification and independently detect faults in the sensors.
An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level.
arXiv Detail & Related papers (2024-10-11T09:36:38Z) - A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions.
The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training.
Results indicate significant performance improvements across all settings.
arXiv Detail & Related papers (2024-07-03T07:19:41Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - Taking a PEEK into YOLOv5 for Satellite Component Recognition via
Entropy-based Visual Explanations [0.0]
This paper contributes to efforts in enabling autonomous swarms of small chaser satellites for target geometry determination.
Our research explores on-orbit use of the You Only Look Once v5 (YOLOv5) object detection model trained to detect satellite components.
arXiv Detail & Related papers (2023-11-03T04:21:27Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - SpaceYOLO: A Human-Inspired Model for Real-time, On-board Spacecraft
Feature Detection [0.0]
Real-time, automated spacecraft feature recognition is needed to pinpoint the locations of collision hazards.
New algorithm SpaceYOLO fuses a state-of-the-art object detector YOLOv5 with a separate neural network based on human-inspired decision processes.
Performance in autonomous spacecraft detection of SpaceYOLO is compared to ordinary YOLOv5 in hardware-in-the-loop experiments.
arXiv Detail & Related papers (2023-02-02T02:11:39Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
arXiv Detail & Related papers (2020-10-27T09:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.