論文の概要: Fusing uncalibrated IMUs and handheld smartphone video to reconstruct knee kinematics
- arxiv url: http://arxiv.org/abs/2405.17368v1
- Date: Mon, 27 May 2024 17:23:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 14:23:58.797682
- Title: Fusing uncalibrated IMUs and handheld smartphone video to reconstruct knee kinematics
- Title(参考訳): 人工膝関節とハンドヘルド式スマートフォンによる人工膝関節の再建
- Authors: J. D. Peiffer, Kunal Shah, Shawana Anarwala, Kayan Abdou, R. James Cotton,
- Abstract要約: 本稿では,ハンドヘルドスマートフォンの映像とウェアラブルセンサデータの完全な時間分解能を両立させる手法を提案する。
歩行障害のない人,下肢義肢使用者,脳卒中歴のある人を対象に,これを検証した。
- 参考スコア(独自算出の注目度): 1.5728609542259502
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Video and wearable sensor data provide complementary information about human movement. Video provides a holistic understanding of the entire body in the world while wearable sensors provide high-resolution measurements of specific body segments. A robust method to fuse these modalities and obtain biomechanically accurate kinematics would have substantial utility for clinical assessment and monitoring. While multiple video-sensor fusion methods exist, most assume that a time-intensive, and often brittle, sensor-body calibration process has already been performed. In this work, we present a method to combine handheld smartphone video and uncalibrated wearable sensor data at their full temporal resolution. Our monocular, video-only, biomechanical reconstruction already performs well, with only several degrees of error at the knee during walking compared to markerless motion capture. Reconstructing from a fusion of video and wearable sensor data further reduces this error. We validate this in a mixture of people with no gait impairments, lower limb prosthesis users, and individuals with a history of stroke. We also show that sensor data allows tracking through periods of visual occlusion.
- Abstract(参考訳): ビデオとウェアラブルセンサーのデータは、人間の動きを補完する情報を提供する。
ビデオは世界の全身を総合的に理解し、ウェアラブルセンサーは特定の身体セグメントを高解像度で測定する。
これらのモダリティを融合し、生体力学的に正確なキネマティクスを得るための堅牢な方法として、臨床評価とモニタリングにかなりの有用性がある。
複数のビデオセンサー融合法が存在するが、ほとんどの場合、時間集約的で、しばしば脆く、センサー本体の校正プロセスがすでに行われていると仮定する。
そこで本研究では,ハンドヘルドスマートフォンの映像と非校正型ウェアラブルセンサデータを時間分解能で組み合わせる手法を提案する。
単眼でビデオのみのバイオメカニカルリコンストラクションは、マーカーレスモーションキャプチャに比べて、歩行中に膝に数度の誤差しかなく、すでにうまく機能しています。
ビデオとウェアラブルセンサーデータの融合による再構成により、このエラーはさらに減少する。
歩行障害のない人,下肢義肢使用者,脳卒中歴のある人を対象に,これを検証した。
また、センサデータによって視覚的閉塞の期間を追跡できることも示している。
関連論文リスト
- OpenCap markerless motion capture estimation of lower extremity kinematics and dynamics in cycling [0.0]
マーカレスモーションキャプチャは、従来のマーカーベースのシステムよりもいくつかの利点がある。
システムは人体のランドマークを直接検出することができ、手作業による処理やマーカーの配置に伴うエラーを減らすことができる。
本研究では,マーカーレスモーションキャプチャシステムであるOpenCapと,サイクリングバイオメカニクス評価における従来のマーカーベースシステムとの比較を行った。
論文 参考訳(メタデータ) (2024-08-20T15:57:40Z) - Multimodal Active Measurement for Human Mesh Recovery in Close Proximity [13.265259738826302]
物理的な人間とロボットの相互作用では、ロボットは対象者の正確な身体のポーズを推定する必要がある。
これらのpHRIシナリオでは、ロボットは物理的相互作用のためにロボットに近づかなければならないため、装備されたカメラで対象者の身体を完全に観察することはできない。
本稿では,2次元LiDARのような触覚センサを備えたカメラのアクティブな計測・センサ融合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-12T08:17:57Z) - Intelligent Knee Sleeves: A Real-time Multimodal Dataset for 3D Lower
Body Motion Estimation Using Smart Textile [2.2008680042670123]
本稿では,人間のポーズ推定のために,Intelligent Knee Sleevesの新たなペアを用いてベンチマークを収集したマルチモーダルデータセットを提案する。
本システムは,Knee Sleevesの時系列データと,可視化されたモーションキャプチャーカメラシステムからの対応する地上真実ラベルからなる同期データセットを利用する。
我々はこれらを用いて、異なる活動を行う個人のウェアラブルデータのみに基づく3次元人体モデルを生成する。
論文 参考訳(メタデータ) (2023-10-02T00:34:21Z) - Multimodal video and IMU kinematic dataset on daily life activities
using affordable devices (VIDIMU) [0.0]
本データセットの目的は,日常活動の認識と運動解析のために,手頃な価格の患者総運動追跡ソリューションへの道を開くことである。
i)選択した運動の臨床的関連性、(ii)安価なビデオとカスタムセンサーの併用、(iii)3Dボディのポーズ追跡とモーション再構成のマルチモーダルデータ処理のための最先端ツールの実装。
論文 参考訳(メタデータ) (2023-03-27T14:05:49Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - QuestSim: Human Motion Tracking from Sparse Sensors with Simulated
Avatars [80.05743236282564]
人間の身体の動きのリアルタイム追跡は、AR/VRにおける没入感のある体験に不可欠である。
本稿では,HMDと2つのコントローラから疎信号を取り出す強化学習フレームワークを提案する。
一つのポリシーは、多様な移動スタイル、異なる体の大きさ、新しい環境に対して堅牢であることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:25:54Z) - Drone Detection and Tracking in Real-Time by Fusion of Different Sensing
Modalities [66.4525391417921]
マルチセンサ・ドローン検知システムの設計と評価を行う。
われわれのソリューションは、魚眼カメラを統合し、空の広い部分を監視し、他のカメラを興味ある対象に向けて操縦する。
このサーマルカメラは、たとえこのカメラが解像度が低いとしても、ビデオカメラと同じくらい実現可能なソリューションであることが示されている。
論文 参考訳(メタデータ) (2022-07-05T10:00:58Z) - Human POSEitioning System (HPS): 3D Human Pose Estimation and
Self-localization in Large Scenes from Body-Mounted Sensors [71.29186299435423]
HPS(Human POSEitioning System)は、周囲の環境の3Dスキャンで登録された人間の完全な3Dポーズを回復する手法です。
最適化に基づく統合は2つの利点を生かし、結果としてドリフトのないポーズの精度が得られることを示す。
hpsは、人間が外部カメラに直接視線を向けなくてもシーンと対話できるvr/arアプリケーションとして使用できる。
論文 参考訳(メタデータ) (2021-03-31T17:58:31Z) - Human Leg Motion Tracking by Fusing IMUs and RGB Camera Data Using
Extended Kalman Filter [4.189643331553922]
IMUベースのシステムとMarkerベースのモーショントラッキングシステムは、実装コストが低く軽量であるため、ムーブメントを追跡する最も一般的な方法である。
本稿では、カメラマーカーシステムデータと融合したIMUセンサデータを用いて、四元数に基づく拡張カルマンフィルタを用いて、人間の足のセグメントの動きを復元する手法を提案する。
論文 参考訳(メタデータ) (2020-11-01T17:54:53Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
既存の触覚センサーは、平らで、感度が小さいか、低解像度の信号のみを提供する。
我々は,多方向高解像度触覚センサOmniTactを紹介する。
我々は,ロボット制御の課題に対して,OmniTactの能力を評価する。
論文 参考訳(メタデータ) (2020-03-16T01:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。