論文の概要: CREIMBO: Cross-Regional Ensemble Interactions in Multi-view Brain Observations
- arxiv url: http://arxiv.org/abs/2405.17395v2
- Date: Sun, 12 Jan 2025 02:26:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 02:44:47.492748
- Title: CREIMBO: Cross-Regional Ensemble Interactions in Multi-view Brain Observations
- Title(参考訳): CREIMBO:多視点脳観察における領域間アンサンブル相互作用
- Authors: Noga Mudrik, Ryan Ly, Oliver Ruebel, Adam S. Charles,
- Abstract要約: 現在の分析手法は、しばしばそのようなデータの豊かさを活かさない。
CREIMBOは、グラフ駆動辞書学習を通じて、セッションごとのニューラルアンサンブルの隠れた構成を特定する。
合成データ中の真の成分を回収するCREIMBOの能力を実証する。
- 参考スコア(独自算出の注目度): 3.3713037259290255
- License:
- Abstract: Modern recordings of neural activity provide diverse observations of neurons across brain areas, conditions, and subjects; presenting an exciting opportunity to reveal the fundamentals of brain-wide dynamics. Current analysis methods often fail to harness the richness of such data, as they provide either uninterpretable representations or oversimplify models (e.g., by assuming stationary dynamics). Here, instead of regarding asynchronous neural recordings that lack alignment in neural identity or brain areas as a limitation, we leverage these diverse views into the brain to learn a unified model of neural dynamics. We assume that brain activity is driven by multiple hidden global sub-circuits. These sub-circuits represent global basis interactions between neural ensembles -- functional groups of neurons -- such that the time-varying decomposition of these circuits defines how the ensembles' interactions evolve over time non-stationarily. We discover the neural ensembles underlying non-simultaneous observations, along with their non-stationary evolving interactions, with our new model, CREIMBO. CREIMBO identifies the hidden composition of per-session neural ensembles through graph-driven dictionary learning and models the ensemble dynamics on a low-dimensional manifold spanned by a sparse time-varying composition of the global sub-circuits. Thus, CREIMBO disentangles overlapping temporal neural processes while preserving interpretability due to the use of a shared underlying sub-circuit basis. Moreover, CREIMBO distinguishes session-specific computations from global (session-invariant) ones by identifying session covariates and variations in sub-circuit activations. We demonstrate CREIMBO's ability to recover true components in synthetic data, and uncover meaningful brain dynamics including cross-subject neural mechanisms and inter- vs. intra-region dynamical motifs.
- Abstract(参考訳): 現代の脳活動の記録は、脳の領域、状態、被写体にわたるニューロンの多様な観察を提供し、脳全体のダイナミクスの基礎を明らかにするエキサイティングな機会を提供する。
現在の分析手法は、解釈不能な表現やモデル(例えば定常力学を仮定して)を単純化するため、そのようなデータの豊かさを利用することができないことが多い。
ここでは、神経アイデンティティや脳領域のアライメントを制限として欠く非同期なニューラル記録ではなく、これらの多様なビューを脳に活用して、ニューラルダイナミクスの統一モデルを学ぶ。
脳の活動は、複数の隠れたグローバルサブ回路によって引き起こされていると仮定する。
これらのサブ回路は、ニューロンの機能的なグループであるニューラルアンサンブル間の大域的基底相互作用を表しており、これらの回路の時間変化による分解は、アンサンブルの相互作用が時間とともに非定常的にどのように進化するかを定義する。
我々は、新しいモデルであるCREIMBOとともに、非定常的な相互作用とともに、非同時観測の基礎となる神経アンサンブルを発見する。
CREIMBOは、グラフ駆動辞書学習を通してセッションごとのニューラルアンサンブルの隠れた構成を特定し、グローバルサブサーキットのスパースな時間変化構成により、低次元多様体上のアンサンブルダイナミクスをモデル化する。
このように、CREIMBOは、共通のサブ回路ベースの使用により解釈性を保ちながら、重なり合う時間的神経プロセスを混乱させる。
さらに、CREIMBOはセッションの共変量とサブ回路アクティベーションの変動を識別することで、セッション固有の計算とグローバルな(セッション不変)計算とを区別する。
合成データ中の真の成分を回収するCREIMBOの能力を実証し、クロスオブジェクト神経機構や領域内動的モチーフを含む有意義な脳動態を明らかにする。
関連論文リスト
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
神経科学とAIの両方において、ニューロン間の'結合'が競合学習の形式につながることは長年知られている。
完全に接続された畳み込みや注意機構などの任意の接続設計とともに人工的再考を導入する。
このアイデアは、教師なしオブジェクト発見、敵対的ロバスト性、不確実性、推論など、幅広いタスクに性能改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Latent Representation Learning for Multimodal Brain Activity Translation [14.511112110420271]
本稿では、空間的および時間的解像度ギャップをモダリティに橋渡しするSAMBA(Spatiotemporal Alignment of Multimodal Brain Activity)フレームワークを提案する。
SAMBAは、電気生理学的記録のスペクトルフィルタリングのための新しい注目ベースのウェーブレット分解を導入した。
SAMBAの学習は、翻訳の他に、脳情報処理の豊かな表現も学べることが示されている。
論文 参考訳(メタデータ) (2024-09-27T05:50:29Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - Two-compartment neuronal spiking model expressing brain-state specific apical-amplification, -isolation and -drive regimes [0.7255608805275865]
脳状態特異的神経機構は、過去と文脈の知識を現在の、入ってくる証拠の流れと統合する上で重要な役割を担っている。
この研究の目的は、脳の状態に応じた学習を支援するのに不可欠な特徴を組み込んだ2成分のスパイクニューロンモデルを提供することである。
論文 参考訳(メタデータ) (2023-11-10T14:16:46Z) - Astrocytes as a mechanism for meta-plasticity and contextually-guided
network function [2.66269503676104]
アストロサイトは、ユビキタスでエニグマティックな非神経細胞である。
アストロサイトは脳機能や神経計算においてより直接的で活発な役割を果たす。
論文 参考訳(メタデータ) (2023-11-06T20:31:01Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。