論文の概要: Manifolds and Modules: How Function Develops in a Neural Foundation Model
- arxiv url: http://arxiv.org/abs/2512.07869v1
- Date: Wed, 26 Nov 2025 20:36:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-15 04:16:52.532674
- Title: Manifolds and Modules: How Function Develops in a Neural Foundation Model
- Title(参考訳): マニフォールドとモジュール:ニューラルファンデーションモデルにおける関数の展開
- Authors: Johannes Bertram, Luciano Dyballa, T. Anderson Keller, Savik Kinger, Steven W. Zucker,
- Abstract要約: 神経活動の基礎モデルとして,視差刺激に対する時間的応答特性に基づいて各ニューロンを特徴付ける。
モデルの異なる処理段階はそれぞれ、定性的に異なる表現構造を示す。
全体として、本研究は、神経基盤モデルの内部構造の研究として、その内部の生物学的関連性についての洞察を得るものである。
- 参考スコア(独自算出の注目度): 5.518605965321172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models have shown remarkable success in fitting biological visual systems; however, their black-box nature inherently limits their utility for understanding brain function. Here, we peek inside a SOTA foundation model of neural activity (Wang et al., 2025) as a physiologist might, characterizing each 'neuron' based on its temporal response properties to parametric stimuli. We analyze how different stimuli are represented in neural activity space by building decoding manifolds, and we analyze how different neurons are represented in stimulus-response space by building neural encoding manifolds. We find that the different processing stages of the model (i.e., the feedforward encoder, recurrent, and readout modules) each exhibit qualitatively different representational structures in these manifolds. The recurrent module shows a jump in capabilities over the encoder module by 'pushing apart' the representations of different temporal stimulus patterns; while the readout module achieves biological fidelity by using numerous specialized feature maps rather than biologically plausible mechanisms. Overall, we present this work as a study of the inner workings of a prominent neural foundation model, gaining insights into the biological relevance of its internals through the novel analysis of its neurons' joint temporal response patterns.
- Abstract(参考訳): 基礎モデルでは、生物学的視覚系を適合させることに成功したが、ブラックボックスの性質は本質的に脳機能を理解するための有用性を制限している。
ここでは、神経活動のSOTA基礎モデル(Wang et al , 2025)の内部を生理学者として覗き込み、パラメトリック刺激に対する時間的応答特性に基づいてそれぞれのニューロンを特徴づける。
我々は、デコード多様体を構築することにより、神経活動空間における異なる刺激がどのように表現されるかを分析し、ニューラルエンコーディング多様体を構築することにより、刺激応答空間における異なるニューロンがどのように表現されるかを分析する。
モデルの異なる処理段階(フィードフォワードエンコーダ、リカレント、リードアウトモジュール)はそれぞれ、これらの多様体において質的に異なる表現構造を示す。
リカレントモジュールは、異なる時間刺激パターンの表現を「分割する」ことでエンコーダモジュール上の能力の上昇を示すが、リードアウトモジュールは生物学的に妥当なメカニズムではなく、多数の特殊特徴写像を用いて生物学的忠実性を達成する。
本研究は、神経基盤モデルの内部構造の研究として、神経細胞の結合時間応答パターンの新たな解析を通して、その内部の生物学的関連性について考察する。
関連論文リスト
- State Space Models Naturally Produce Traveling Waves, Time Cells, and Scale to Abstract Cognitive Functions [7.097247619177705]
ディープラーニングアーキテクチャの新しいクラスであるステートスペースモデル(SSM)に基づくフレームワークを提案する。
我々は、このモデルが生物学的な「時間細胞」を著しく模倣する神経表現を自然に発達させることを実証した。
本研究は,SSMを単一ニューロンのダイナミクスと認知現象を結びつける魅力的な枠組みとして位置づけた。
論文 参考訳(メタデータ) (2025-07-18T03:53:16Z) - NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [63.592664795493725]
NOBLEは、解釈可能なニューロンの特徴を連続周波数変調した埋め込みから電流注入によって誘導されるソマティック電圧応答へのマッピングを学ぶ神経オペレーターフレームワークである。
内在的な実験変数を考慮したニューラルダイナミクスの分布を予測する。
NOBLEは、その一般化を実際の実験データで検証する最初の大規模ディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2025-06-05T01:01:18Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Modularity in Transformers: Investigating Neuron Separability & Specialization [0.0]
トランスフォーマーモデルは様々なアプリケーションでますます普及していますが、内部動作に対する我々の理解は限定的です。
本稿では、視覚(ViT)モデルと言語(Mistral 7B)モデルの両方に着目し、トランスフォーマーアーキテクチャ内のニューロンのモジュラリティとタスクの特殊化について検討する。
選択的プルーニングとMoEficationクラスタリングの組み合わせを用いて、異なるタスクやデータサブセットにわたるニューロンの重複と特殊化を分析する。
論文 参考訳(メタデータ) (2024-08-30T14:35:01Z) - CREIMBO: Cross-Regional Ensemble Interactions in Multi-view Brain Observations [3.3713037259290255]
現在の分析手法は、しばしばそのようなデータの豊かさを活かさない。
CREIMBOは、グラフ駆動辞書学習を通じて、セッションごとのニューラルアンサンブルの隠れた構成を特定する。
合成データ中の真の成分を回収するCREIMBOの能力を実証する。
論文 参考訳(メタデータ) (2024-05-27T17:48:32Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
我々は,脳の皮質ジャイロ-サルカル分割図を予測するための新しいアテンションメッシュ畳み込みモデルを開発した。
実験の結果,我々のモデルによる予測性能は,他の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-21T14:08:53Z) - How to build a cognitive map: insights from models of the hippocampal
formation [0.45880283710344055]
認知地図の概念は、これらの能力の主要な比喩の1つとして現れてきた。
そのような地図の学習と神経表現が 神経科学の中心になっている
論文 参考訳(メタデータ) (2022-02-03T16:49:37Z) - On the Evolution of Neuron Communities in a Deep Learning Architecture [0.7106986689736827]
本稿では,ディープラーニングに基づく分類モデルのニューロン活性化パターンについて検討する。
コミュニティの品質(モジュラリティ)とエントロピーの両方が、ディープラーニングモデルのパフォーマンスと密接に関連していることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:09:55Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。