論文の概要: Symmetric Reinforcement Learning Loss for Robust Learning on Diverse Tasks and Model Scales
- arxiv url: http://arxiv.org/abs/2405.17618v1
- Date: Mon, 27 May 2024 19:28:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-29 23:21:23.723262
- Title: Symmetric Reinforcement Learning Loss for Robust Learning on Diverse Tasks and Model Scales
- Title(参考訳): 多様な課題とモデル尺度に基づくロバスト学習のための対称性強化学習損失
- Authors: Ju-Seung Byun, Andrew Perrault,
- Abstract要約: 強化学習(RL)トレーニングは、移動目標や高勾配分散などの要因により本質的に不安定である。
本研究では,雑音データに対する教師付き学習から逆クロスエントロピー(RCE)を適用し,対称的なRL損失を定義することにより,RLトレーニングの安定性を向上させる。
- 参考スコア(独自算出の注目度): 13.818149654692863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) training is inherently unstable due to factors such as moving targets and high gradient variance. Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning from AI Feedback (RLAIF) can introduce additional difficulty. Differing preferences can complicate the alignment process, and prediction errors in a trained reward model can become more severe as the LLM generates unseen outputs. To enhance training robustness, RL has adopted techniques from supervised learning, such as ensembles and layer normalization. In this work, we improve the stability of RL training by adapting the reverse cross entropy (RCE) from supervised learning for noisy data to define a symmetric RL loss. We demonstrate performance improvements across various tasks and scales. We conduct experiments in discrete action tasks (Atari games) and continuous action space tasks (MuJoCo benchmark and Box2D) using Symmetric A2C (SA2C) and Symmetric PPO (SPPO), with and without added noise with especially notable performance in SPPO across different hyperparameters. Furthermore, we validate the benefits of the symmetric RL loss when using SPPO for large language models through improved performance in RLHF tasks, such as IMDB positive sentiment sentiment and TL;DR summarization tasks.
- Abstract(参考訳): 強化学習(RL)トレーニングは、移動目標や高勾配分散などの要因により本質的に不安定である。
ヒューマンフィードバックからの強化学習(RLHF)とAIフィードバックからの強化学習(RLAIF)は、さらなる困難をもたらす可能性がある。
ディファリングの選好はアライメント処理を複雑にし、LLMが目に見えない出力を生成すると、トレーニングされた報酬モデルにおける予測誤差がより深刻になる。
トレーニングの堅牢性を高めるため、RLはアンサンブルやレイヤー正規化といった教師あり学習のテクニックを採用した。
本研究では,雑音データに対する教師付き学習から逆クロスエントロピー(RCE)を適用し,対称的なRL損失を定義することにより,RLトレーニングの安定性を向上させる。
さまざまなタスクやスケールにわたるパフォーマンス改善を実演します。
我々は,Symmetric A2C(SA2C)とSymmetric PPO(SPPO)を用いて,離散アクションタスク(Atariゲーム)と連続アクションスペースタスク(MuJoCoベンチマークとBox2D)の実験を行った。
さらに、IMDBの肯定的な感情感情やTL;DRの要約タスクなどのRLHFタスクの性能を改善し、SPPOを大規模言語モデルに使用する際の対称RL損失の利点を検証する。
関連論文リスト
- Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle [53.239242017802056]
強化学習(Reinforcement Learning, RL)は、マルチモーダル大言語モデル(MLLM)の推論能力を高めるための効果的なポストトレーニングパラダイムとして登場した。
しかしながら、現在のRLパイプラインは、アドバンテージ・コラプシング(Advantage Collapsing)とロールアウト・サイレンシング(Rollout Silencing)という2つの未解決の問題によって、トレーニングの非効率に悩まされることが多い。
軌道サンプリングとバッチ合成を動的に再構成することにより、RLの微調整効率を向上する、シンプルだが原則化されたフレームワークであるShuffle-R1を提案する。
論文 参考訳(メタデータ) (2025-08-07T17:53:47Z) - Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards [50.21528417884747]
Omni-Thinkerは多種多様なタスクにわたる大規模言語モデル(LLM)の性能を向上させる統合強化学習フレームワークである。
我々の手法はタスクタイプを一貫した最適化を可能にし、RLベースのトレーニングを主観的ドメインに拡張する。
4つの領域にまたがる実験の結果、カリキュラムの学習は、ジョイントトレーニングよりも5.2%、モデルマージより9.1%向上していることがわかった。
論文 参考訳(メタデータ) (2025-07-20T01:50:16Z) - Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
本研究では,長期強化学習が多種多様な推論領域にまたがる小言語モデルに及ぼす影響について検討する。
我々は,長期的パフォーマンス向上の鍵となる重要な要素として,制御KL正規化,クリッピング率,定期参照ポリシーリセットを導入する。
私たちのモデルは、数学の+14.7%、コーディングの+13.9%、論理パズルの+54.8%など、強力なベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2025-07-16T17:59:24Z) - Causal-Paced Deep Reinforcement Learning [4.728991543521559]
Causal-Paced Deep Reinforcement Learning (CP-DRL)は、相互作用データ近似に基づくタスク間のSCM差を認識するカリキュラム学習フレームワークである。
実証的に、CP-DRLはPoint Massベンチマークの既存のカリキュラム手法よりも優れている。
論文 参考訳(メタデータ) (2025-06-24T20:15:01Z) - Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-liteは、強化学習(RL)により最適化されたMixture-of-Experts(MoE)ベースの大規模言語モデルである
我々のアプローチは、挑戦的なベンチマーク上でのSOTA(State-of-the-art)の小規模推論モデルの性能と一致する。
論文 参考訳(メタデータ) (2025-06-17T17:12:34Z) - IN-RIL: Interleaved Reinforcement and Imitation Learning for Policy Fine-Tuning [25.642307880136332]
イミテーションラーニング(IL)と強化ラーニング(RL)はそれぞれ、ロボットポリシーラーニングに明確なアドバンテージを提供する。
IL-based pre-training と RL-based fine-tuning を用いた既存のロボット学習アプローチは有望であるが、この2段階学習パラダイムは、RL 微細チューニングフェーズの不安定性とサンプル効率の低下に悩まされることが多い。
本研究では,政策微調整のためのIN-RIL,INterleaved Reinforcement Learning and Imitation Learningを紹介する。
論文 参考訳(メタデータ) (2025-05-15T16:01:21Z) - Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
強化学習(RL)に基づく微調整は、訓練後の言語モデルにおいて重要なステップとなっている。
数理推論のためのRLファインタニングを、スクラッチから完全にトレーニングモデルを用いて体系的にエンドツーエンドに研究する。
論文 参考訳(メタデータ) (2025-04-10T17:15:53Z) - Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization [22.67700436936984]
ステップレベルのオフライン強化学習アルゴリズムであるDAPO(Direct Advantage Policy Optimization)を導入する。
DAPOは、各ステップにおける推論精度を予測するために批判機能を使用し、それによって高密度信号を生成して生成戦略を洗練させる。
その結果,DAPO は SFT モデルと RL モデルの両方の数学的・コード的能力を効果的に向上し,DAPO の有効性を示すことができた。
論文 参考訳(メタデータ) (2024-12-24T08:39:35Z) - Dynamic Learning Rate for Deep Reinforcement Learning: A Bandit Approach [0.9549646359252346]
深層強化学習(LRRL)のための動的学習率を提案する。
LRRLは、トレーニング中のエージェントのパフォーマンスに基づいて学習率を選択するメタラーニングアプローチである。
実験の結果,LRRLは深部RLアルゴリズムの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2024-10-16T14:15:28Z) - Avoiding mode collapse in diffusion models fine-tuned with reinforcement learning [0.0]
強化学習(RL)による微調整基礎モデルは、下流の目標に整合する上で有望であることが証明されている。
拡散モデル (DM) の階層的性質を生かし, 各エポックでRL法で動的に訓練する。
HRFで訓練したモデルは、下流タスクにおける多様性の保存性を向上し、微調整の堅牢性を高め、平均報酬を損なうことなく達成できることが示される。
論文 参考訳(メタデータ) (2024-10-10T19:06:23Z) - Stop Regressing: Training Value Functions via Classification for
Scalable Deep RL [109.44370201929246]
分類的クロスエントロピーを用いた値関数のトレーニングにより,様々な領域における性能とスケーラビリティが向上することを示す。
例えば、SoftMoEによるAtari 2600ゲームでのシングルタスクRL、大規模ResNetによるAtariでのマルチタスクRL、Q-トランスフォーマーによるロボット操作、検索なしでチェスをプレイする、高容量トランスフォーマーによる言語エージェントWordleタスクなどがある。
論文 参考訳(メタデータ) (2024-03-06T18:55:47Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
強化学習(Reinforcement Learning, RL)は、教師付き学習とは本質的に異なり、実際、これらの学習は単純なRLタスクでもうまく機能しない。
エージェント勾配分布は非独立で同一分布であり、非効率なメタトレーニングをもたらす。
おもちゃのタスクでしか訓練されていないが、我々の学習はブラックスの目に見えない複雑なタスクを一般化できることを示した。
論文 参考訳(メタデータ) (2023-02-03T00:11:02Z) - Curriculum-based Asymmetric Multi-task Reinforcement Learning [14.5357225087828]
本稿では,複数の強化学習(RL)タスクを完全に処理するための,最初のカリキュラムベースの非対称マルチタスク学習(AMTL)アルゴリズムであるCAMRLを紹介する。
カリキュラムベースAMTLにおけるワンオフトレーニング順序のカスタマイズによる負の影響を軽減するため、CAMRLは並列シングルタスクRLと非対称マルチタスクRL(MTRL)間のトレーニングモードを切り替える
我々は、Gym-minigrid、Meta-world、Atariビデオゲーム、視覚ベースのPyBulletタスク、RLBenchを含むマルチタスクRLの幅広いベンチマーク実験を行った。
論文 参考訳(メタデータ) (2022-11-07T08:05:13Z) - Improving GANs with A Dynamic Discriminator [106.54552336711997]
我々は、オンザフライで調整可能な判別器は、そのような時間変化に適応できると論じる。
総合的な実証研究により、提案したトレーニング戦略がDynamicDと呼ばれ、追加のコストやトレーニング目標を発生させることなく、合成性能を向上させることが確認された。
論文 参考訳(メタデータ) (2022-09-20T17:57:33Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - Value Penalized Q-Learning for Recommender Systems [30.704083806571074]
RLエージェントに対する累積報酬の最大化がRSの目的を満たすため、レコメンデーターシステム(RS)への強化学習のスケーリングは有望である。
この目標の重要なアプローチはオフラインのRLで、ログされたデータからポリシーを学ぶことを目的としている。
本稿では,不確実性に基づくオフラインRLアルゴリズムであるValue Penalized Q-learning (VPQ)を提案する。
論文 参考訳(メタデータ) (2021-10-15T08:08:28Z) - Dynamic Multi-Scale Loss Optimization for Object Detection [14.256807110937622]
マルチスケール検出器訓練の客観的不均衡について検討する。
本稿では, 適応可変重み付け (AVW) を提案する。
トレーニング中に重み付け方式を確率的に決定する新しい強化学習最適化(RLO)を開発した。
論文 参考訳(メタデータ) (2021-08-09T13:12:41Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。