論文の概要: Tamed Langevin sampling under weaker conditions
- arxiv url: http://arxiv.org/abs/2405.17693v1
- Date: Mon, 27 May 2024 23:00:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 23:01:26.818082
- Title: Tamed Langevin sampling under weaker conditions
- Title(参考訳): 弱い条件下でのTyod Langevinサンプリング
- Authors: Iosif Lytras, Panayotis Mertikopoulos,
- Abstract要約: ログコンケーブではなく,弱い散逸性しか持たない分布から抽出する問題について検討する。
そこで本研究では,対象分布の成長と崩壊特性に合わせたテイミング手法を提案する。
提案したサンプルに対して,Kulback-Leiblerの発散,全変動,ワッサーシュタイン距離といった条件で明確な非漸近保証を与える。
- 参考スコア(独自算出の注目度): 27.872857402255775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by applications to deep learning which often fail standard Lipschitz smoothness requirements, we examine the problem of sampling from distributions that are not log-concave and are only weakly dissipative, with log-gradients allowed to grow superlinearly at infinity. In terms of structure, we only assume that the target distribution satisfies either a log-Sobolev or a Poincar\'e inequality and a local Lipschitz smoothness assumption with modulus growing possibly polynomially at infinity. This set of assumptions greatly exceeds the operational limits of the "vanilla" unadjusted Langevin algorithm (ULA), making sampling from such distributions a highly involved affair. To account for this, we introduce a taming scheme which is tailored to the growth and decay properties of the target distribution, and we provide explicit non-asymptotic guarantees for the proposed sampler in terms of the Kullback-Leibler (KL) divergence, total variation, and Wasserstein distance to the target distribution.
- Abstract(参考訳): 標準的なリプシッツの平滑性要件を満たさない深層学習への応用により, 対数凹凸ではなく, 弱散逸性しか持たない分布から, 対数勾配を無限大で超直線的に成長させることが可能な分布を抽出する問題について検討した。
構造の観点からは、対象の分布は対数ソボレフあるいはポアンカルの不等式と、無限大で多項式的に成長する公理を持つ局所リプシッツ滑らか性仮定のいずれかを満たすと仮定するのみである。
この仮定は "vanilla" の未調整ランゲヴィンアルゴリズム (ULA) の動作限界を大きく超え、そのような分布からのサンプリングは極めて関係のある問題である。
そこで本研究では,対象分布の成長と崩壊特性に合わせたテーキング方式を導入し,KL(Kulback-Leibler)の発散,全変動,ワッサーシュタイン距離を対象分布に比例して明らかに非漸近的な保証を提供する。
関連論文リスト
- Constrained Sampling with Primal-Dual Langevin Monte Carlo [15.634831573546041]
この研究は、正規化定数まで既知の確率分布からサンプリングする問題を考察する。
一般非線形関数の期待値によって定義された統計的制約の集合を満たす。
我々は,目標分布とサンプルを同時に制約する離散時間原始二元Langevin Monte Carloアルゴリズム(PD-LMC)を提唱した。
論文 参考訳(メタデータ) (2024-11-01T13:26:13Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Controllable Generation via Locally Constrained Resampling [77.48624621592523]
本研究では, ベイズ条件付けを行い, 制約条件下でサンプルを描画する, トラクタブルな確率的手法を提案する。
提案手法はシーケンス全体を考慮し,現行のグリード法よりも大域的に最適に制約された生成を導出する。
提案手法は, 有害な世代からモデル出力を分離し, 脱毒化に対する同様のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2024-10-17T00:49:53Z) - Robust Generative Learning with Lipschitz-Regularized $α$-Divergences Allows Minimal Assumptions on Target Distributions [12.19634962193403]
本稿では,Lipschitz-regularized $alpha$-divergencesの生成モデルにおける目的関数としてのロバスト性を示す。
GANや勾配流などの生成モデルの安定な訓練に不可欠な変分微分の存在と有限性を証明する。
数値実験により、Lipschitz-regularized $alpha$-divergencesを利用した生成モデルは、様々な困難なシナリオで安定して分布を学習できることが確認された。
論文 参考訳(メタデータ) (2024-05-22T19:58:13Z) - Broadening Target Distributions for Accelerated Diffusion Models via a Novel Analysis Approach [49.97755400231656]
本研究では,新しいDDPMサンプリング器が,これまで考慮されていなかった3種類の分散クラスに対して高速化性能を実現することを示す。
この結果から, DDPM型加速サンプリング器におけるデータ次元$d$への依存性が改善された。
論文 参考訳(メタデータ) (2024-02-21T16:11:47Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Mean-Square Analysis of Discretized It\^o Diffusions for Heavy-tailed
Sampling [17.415391025051434]
重み付きポインカーの不等式に関連する伊藤拡散の自然クラスを離散化することにより、重み付き分布のクラスからのサンプリングの複雑さを分析する。
平均二乗解析に基づいて、ワッサーシュタイン2計量のターゲット分布に近い分布が$epsilon$のサンプルを得るための反復複雑性を確立する。
論文 参考訳(メタデータ) (2023-03-01T15:16:03Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - Unadjusted Langevin algorithm for sampling a mixture of weakly smooth
potentials [0.0]
我々は,ポアンカーの不等式や球体の外側の非強凸の下での収束保証を証明した。
また、滑らかなポテンシャルに対する$L_beta$-Wasserstein 計量の収束も提供する。
論文 参考訳(メタデータ) (2021-12-17T04:10:09Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
確率分布が未知な分布の不確実性の下でBQOについて検討する。
標準的なBQOアプローチは、固定されたサンプル集合が与えられたときの真の期待目標のモンテカルロ推定を最大化する。
この目的のために,新しい後方サンプリングに基づくアルゴリズム,すなわち分布的に堅牢なBQO(DRBQO)を提案する。
論文 参考訳(メタデータ) (2020-01-19T12:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。