Counterfactual Explanations for Multivariate Time-Series without Training Datasets
- URL: http://arxiv.org/abs/2405.18563v1
- Date: Tue, 28 May 2024 20:15:09 GMT
- Title: Counterfactual Explanations for Multivariate Time-Series without Training Datasets
- Authors: Xiangyu Sun, Raquel Aoki, Kevin H. Wilson,
- Abstract summary: We present CFWoT, a novel reinforcement-learning-based CFE method that generates CFEs when training datasets are unavailable.
We demonstrate the performance of CFWoT against four baselines on several datasets.
- Score: 4.039558709616107
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning (ML) methods have experienced significant growth in the past decade, yet their practical application in high-impact real-world domains has been hindered by their opacity. When ML methods are responsible for making critical decisions, stakeholders often require insights into how to alter these decisions. Counterfactual explanations (CFEs) have emerged as a solution, offering interpretations of opaque ML models and providing a pathway to transition from one decision to another. However, most existing CFE methods require access to the model's training dataset, few methods can handle multivariate time-series, and none can handle multivariate time-series without training datasets. These limitations can be formidable in many scenarios. In this paper, we present CFWoT, a novel reinforcement-learning-based CFE method that generates CFEs when training datasets are unavailable. CFWoT is model-agnostic and suitable for both static and multivariate time-series datasets with continuous and discrete features. Users have the flexibility to specify non-actionable, immutable, and preferred features, as well as causal constraints which CFWoT guarantees will be respected. We demonstrate the performance of CFWoT against four baselines on several datasets and find that, despite not having access to a training dataset, CFWoT finds CFEs that make significantly fewer and significantly smaller changes to the input time-series. These properties make CFEs more actionable, as the magnitude of change required to alter an outcome is vastly reduced.
Related papers
- Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
This paper introduces the Cross-modal Few-Shot Learning task, which aims to recognize instances from multiple modalities when only a few labeled examples are available.
We propose a Generative Transfer Learning framework consisting of two stages: the first involves training on abundant unimodal data, and the second focuses on transfer learning to adapt to novel data.
Our finds demonstrate that GTL has superior performance compared to state-of-the-art methods across four distinct multi-modal datasets.
arXiv Detail & Related papers (2024-10-14T16:09:38Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
Multimodal foundation models serve numerous applications at the intersection of vision and language.
To keep models updated, research into continual pretraining mainly explores scenarios with either infrequent, indiscriminate updates on large-scale new data, or frequent, sample-level updates.
We introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements.
arXiv Detail & Related papers (2024-08-26T17:59:01Z) - Benchmarking Counterfactual Interpretability in Deep Learning Models for Time Series Classification [6.683066713491661]
Counterfactual (CF) methods are used to identify minimal changes in instances to alter the model predictions.
Despite extensive research, no existing work benchmarks CF methods in the time series domain.
In this work, we redesign quantitative metrics to accurately capture desirable characteristics in CFs.
arXiv Detail & Related papers (2024-08-22T18:17:26Z) - Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond [13.867793835583463]
We propose an uncertainty-aware memory-based approach to solve catastrophic forgetting.
We retrieve samples with specific characteristics, and - by retraining the model on such samples - we demonstrate the potential of this approach.
arXiv Detail & Related papers (2024-05-29T09:29:39Z) - FCDNet: Frequency-Guided Complementary Dependency Modeling for
Multivariate Time-Series Forecasting [9.083469629116784]
We propose FCDNet, a concise yet effective framework for time-series forecasting.
It helps extract long- and short-term dependency information adaptively from multi-level frequency patterns.
Experiments show that FCDNet significantly exceeds strong baselines.
arXiv Detail & Related papers (2023-12-27T07:29:52Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Detecting Morphing Attacks via Continual Incremental Training [10.796380524798744]
Recent Continual Learning (CL) paradigm may represent an effective solution to enable incremental training, even through multiple sites.
We investigate the performance of different Continual Learning methods in this scenario, simulating a learning model that is updated every time a new chunk of data, even of variable size, is available.
Experimental results reveal that a particular CL method, namely Learning without Forgetting (LwF), is one of the best-performing algorithms.
arXiv Detail & Related papers (2023-07-27T17:48:29Z) - A Framework of Meta Functional Learning for Regularising Knowledge
Transfer [89.74127682599898]
This work proposes a novel framework of Meta Functional Learning (MFL) by meta-learning a generalisable functional model from data-rich tasks.
The MFL computes meta-knowledge on functional regularisation generalisable to different learning tasks by which functional training on limited labelled data promotes more discriminative functions to be learned.
arXiv Detail & Related papers (2022-03-28T15:24:09Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - FLUID: A Unified Evaluation Framework for Flexible Sequential Data [42.44973069520298]
We introduce a new unified evaluation framework - FLUID (Flexible Sequential Data)
FLUID integrates the objectives of few-shot, continual, transfer, and representation learning.
We conduct experiments on a broad set of methods which shed new insight on the advantages and limitations of current solutions.
arXiv Detail & Related papers (2020-07-06T04:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.