論文の概要: Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems
- arxiv url: http://arxiv.org/abs/2405.18580v1
- Date: Tue, 28 May 2024 20:54:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:43:38.604302
- Title: Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems
- Title(参考訳): 産業における人工知能 4.0:産業システム統合の課題
- Authors: Alexander Windmann, Philipp Wittenberg, Marvin Schieseck, Oliver Niggemann,
- Abstract要約: サイバー物理システム(CPS)は、予測保守や生産計画を含むアプリケーションに人工知能(AI)が活用できる膨大なデータセットを生成する。
AIの可能性を実証しているにもかかわらず、製造業のような分野に広く採用されていることは依然として限られている。
- 参考スコア(独自算出の注目度): 45.31340537171788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Industry 4.0, Cyber-Physical Systems (CPS) generate vast data sets that can be leveraged by Artificial Intelligence (AI) for applications including predictive maintenance and production planning. However, despite the demonstrated potential of AI, its widespread adoption in sectors like manufacturing remains limited. Our comprehensive review of recent literature, including standards and reports, pinpoints key challenges: system integration, data-related issues, managing workforce-related concerns and ensuring trustworthy AI. A quantitative analysis highlights particular challenges and topics that are important for practitioners but still need to be sufficiently investigated by academics. The paper briefly discusses existing solutions to these challenges and proposes avenues for future research. We hope that this survey serves as a resource for practitioners evaluating the cost-benefit implications of AI in CPS and for researchers aiming to address these urgent challenges.
- Abstract(参考訳): 業界 4.0 では、CPS (Cyber-Physical Systems) は、予測保守や生産計画を含むアプリケーションに人工知能 (AI) が活用できる膨大なデータセットを生成する。
しかし、AIの可能性を実証しているにもかかわらず、製造業のような分野に広く採用されていることは依然として限られている。
システム統合、データ関連の問題、労働関連の問題の管理、信頼できるAIの確保などです。
定量的分析では、実践者にとって重要な課題とトピックが強調されるが、それでも学者によって十分に調査される必要がある。
本稿では,これらの課題に対する既存の解決策を簡潔に論じ,今後の研究への道筋を提案する。
この調査は、CPSにおけるAIの費用対効果を評価する実践者や、これらの緊急課題に対処することを目指す研究者のためのリソースとして役立ちたい。
関連論文リスト
- Data Issues in Industrial AI System: A Meta-Review and Research Strategy [10.540603300770885]
人工知能(AI)は、産業システムにおいてますます重要な役割を担っている。
近年、さまざまな業界でAIを採用する傾向にあるが、実際のAIの採用は認識されるほど発展していない。
これらのデータ問題にどのように対処するかは、業界と学術の両方に直面する重要な懸念事項である。
論文 参考訳(メタデータ) (2024-06-22T08:36:59Z) - Dealing with Data for RE: Mitigating Challenges while using NLP and
Generative AI [2.9189409618561966]
本章では、ソフトウェア工学全般の進化する展望、特に要件工学(RE)について論じている。
自然言語処理(NLP)と生成AIをエンタープライズクリティカルなソフトウェアシステムに統合する際に生じる課題について論じる。
本は、読者に必要な知識とツールを提供するために、実践的な洞察、解決策、例を提供する。
論文 参考訳(メタデータ) (2024-02-26T19:19:47Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - AI in ESG for Financial Institutions: An Industrial Survey [4.893954917947095]
本稿では,ESGフレームワークの活性化におけるAIの必要性と影響を明らかにするために,産業環境を調査した。
調査では、分析能力、リスク評価、顧客エンゲージメント、報告精度など、ESGの主要な3つの柱にまたがるAIアプリケーションを分類した。
この論文は、ESG関連の銀行プロセスにおけるAI展開の倫理的側面を強調し、責任と持続可能なAIの衝動についても論じている。
論文 参考訳(メタデータ) (2024-02-03T02:14:47Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Predictable Artificial Intelligence [67.79118050651908]
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
本稿では,予測可能なAIに関する疑問,仮説,課題を解明することを目的とする。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - The Duo of Artificial Intelligence and Big Data for Industry 4.0: Review
of Applications, Techniques, Challenges, and Future Research Directions [37.22337155095065]
本稿では,産業におけるAIとビッグデータのさまざまな側面について概観する。
私たちは、AIとビッグデータのデュオが産業4.0のさまざまなアプリケーションでどのように役立つかを強調し、分析します。
論文 参考訳(メタデータ) (2021-04-06T11:08:02Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。