論文の概要: Deep Bayesian Filter for Bayes-faithful Data Assimilation
- arxiv url: http://arxiv.org/abs/2405.18674v1
- Date: Wed, 29 May 2024 00:42:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:13:51.647607
- Title: Deep Bayesian Filter for Bayes-faithful Data Assimilation
- Title(参考訳): ベイズ忠実データ同化のためのディープベイズフィルタ
- Authors: Yuta Tarumi, Keisuke Fukuda, Shin-ichi Maeda,
- Abstract要約: 非線形状態空間モデル(SSM)のデータ同化のためのディープベイズフィルタ(DBF)を提案する。
DBF は新しい潜伏変数 $h_t$ を新しい潜伏変数 (fancy'') 空間上に構築し、観測を $o_t$ に同化する。
実験の結果,DBFは様々なタスクや条件下でモデルベースアプローチや潜在同化手法よりも優れていた。
- 参考スコア(独自算出の注目度): 3.522950356329991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State estimation for nonlinear state space models is a challenging task. Existing assimilation methodologies predominantly assume Gaussian posteriors on physical space, where true posteriors become inevitably non-Gaussian. We propose Deep Bayesian Filtering (DBF) for data assimilation on nonlinear state space models (SSMs). DBF constructs new latent variables $h_t$ on a new latent (``fancy'') space and assimilates observations $o_t$. By (i) constraining the state transition on fancy space to be linear and (ii) learning a Gaussian inverse observation operator $q(h_t|o_t)$, posteriors always remain Gaussian for DBF. Quite distinctively, the structured design of posteriors provides an analytic formula for the recursive computation of posteriors without accumulating Monte-Carlo sampling errors over time steps. DBF seeks the Gaussian inverse observation operators $q(h_t|o_t)$ and other latent SSM parameters (e.g., dynamics matrix) by maximizing the evidence lower bound. Experiments show that DBF outperforms model-based approaches and latent assimilation methods in various tasks and conditions.
- Abstract(参考訳): 非線形状態空間モデルの状態推定は難しい課題である。
既存の同化法は主に、真の後部が必然的にガウス的でないような物理的空間上のガウス的後部を仮定する。
非線形状態空間モデル(SSM)のデータ同化のためのディープベイズフィルタ(DBF)を提案する。
DBFは、新しい潜伏変数 $h_t$ を新しい潜伏変数 (``fancy'') 空間上に構築し、観測を $o_t$ に同化する。
周辺
一 空想空間上の状態遷移を直線的に制限すること
(ii) ガウス逆観測作用素 $q(h_t|o_t)$ を学習すると、後部は常に DBF に対してガウス的である。
非常に特筆すべきは、後部の構造化設計は、時間ステップでモンテカルロサンプリングエラーを蓄積することなく、後部の再帰的な計算のための解析公式を提供することである。
DBF はガウス逆観測作用素 $q(h_t|o_t)$ とその他の潜在 SSM パラメータ(例えば、ダイナミックス行列)を求める。
実験の結果,DBFは様々なタスクや条件下でモデルベースアプローチや潜在同化手法よりも優れていた。
関連論文リスト
- Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Diffusion-based inpainting of incomplete Euclidean distance matrices of trajectories generated by a fractional Brownian motion [50.38638300332429]
フラクショナルブラウン軌道 (fBm) はランダム性と強いスケール自由相関を特徴とする。
ここでは,fBmの不完全距離行列に対応する劣化した画像の特定のデータセット上で,様々なメモリ指数において拡散確率モデルを検証した。
条件拡散生成は、fBm分布距離の統計を、異なる値の$H$指数で安定に再現する。
論文 参考訳(メタデータ) (2024-04-10T14:22:16Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
我々は密度近似と計算効率の面でいくつかの利点を提供するガウスPSDモデルに基づく新しいフィルタのクラスを提案する。
本研究では,遷移や観測がガウスPSDモデルである場合,フィルタリングを効率的にクローズド形式で行うことができることを示す。
提案する推定器は, 近似の精度に依存し, 遷移確率の正則性に適応する推定誤差を伴って, 高い理論的保証を享受する。
論文 参考訳(メタデータ) (2024-02-15T08:51:49Z) - Dynamical System Identification, Model Selection and Model Uncertainty Quantification by Bayesian Inference [0.8388591755871735]
本研究では,時系列データから動的システム同定を行うためのMAPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-30T12:16:52Z) - Bayesian Approach to Linear Bayesian Networks [3.8711489380602804]
提案手法は, 部分共分散行列の逆数を用いて, 位相次数の各要素を逆方向と親方向から反復的に推定する。
提案手法は,BHLSM,LISTEN,TDアルゴリズムといった最先端の頻繁な手法より合成データの方が優れていることを示す。
論文 参考訳(メタデータ) (2023-11-27T08:10:53Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Bayesian inference of ODEs with Gaussian processes [17.138448665454373]
本稿では、ガウス過程を用いて未知のODEシステムの後部をデータから直接推測する新しいベイズ非パラメトリックモデルを提案する。
ベクトル場後部を表すために,分離された関数型サンプリングを用いてスパース変分推論を導出する。
この手法はベクトル場後部演算の利点を示し、予測不確実性スコアは複数のODE学習タスクにおける代替手法よりも優れている。
論文 参考訳(メタデータ) (2021-06-21T08:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。