論文の概要: Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation
- arxiv url: http://arxiv.org/abs/2405.13149v1
- Date: Tue, 21 May 2024 18:38:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 02:13:10.862167
- Title: Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation
- Title(参考訳): 非線形観測に基づくガウス測度:一貫性、MAP推定器、シミュレーション
- Authors: Yifan Chen, Bamdad Hosseini, Houman Owhadi, Andrew M Stuart,
- Abstract要約: 条件付き確率変数 $xi に対して、Fcirc phi(xi)$ の表現定理を与える。
また, 自然緩和の限界を考慮し, 条件尺度のモードを新たに導入する。
- 参考スコア(独自算出の注目度): 6.5243065532527975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The article presents a systematic study of the problem of conditioning a Gaussian random variable $\xi$ on nonlinear observations of the form $F \circ \phi(\xi)$ where $\phi: \mathcal{X} \to \mathbb{R}^N$ is a bounded linear operator and $F$ is nonlinear. Such problems arise in the context of Bayesian inference and recent machine learning-inspired PDE solvers. We give a representer theorem for the conditioned random variable $\xi \mid F\circ \phi(\xi)$, stating that it decomposes as the sum of an infinite-dimensional Gaussian (which is identified analytically) as well as a finite-dimensional non-Gaussian measure. We also introduce a novel notion of the mode of a conditional measure by taking the limit of the natural relaxation of the problem, to which we can apply the existing notion of maximum a posteriori estimators of posterior measures. Finally, we introduce a variant of the Laplace approximation for the efficient simulation of the aforementioned conditioned Gaussian random variables towards uncertainty quantification.
- Abstract(参考訳): この記事では、ガウス確率変数 $\xi$ を非線型観測値 $F \circ \phi(\xi)$ ここで、$\phi: \mathcal{X} \to \mathbb{R}^N$ は有界線型作用素であり、$F$ は非線形である。
このような問題は、ベイズ推論と最近の機械学習にインスパイアされたPDEソルバの文脈で発生する。
条件付き確率変数 $\xi \mid F\circ \phi(\xi)$ に対し、有限次元のガウス測度だけでなく無限次元のガウス測度の和として分解されるという表現定理を与える。
また,この問題の自然緩和の限界を捉えた条件付き測度モードの新たな概念を導入し,後続測度の最大推定器の既存概念を適用した。
最後に、上述した条件付きガウス確率変数を不確実量化するための効率的なシミュレーションのためのラプラス近似の変種を導入する。
関連論文リスト
- Dynamical System Identification, Model Selection and Model Uncertainty Quantification by Bayesian Inference [0.8388591755871735]
本研究では,時系列データから動的システム同定を行うためのMAPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-30T12:16:52Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Towards a Unified Framework for Uncertainty-aware Nonlinear Variable
Selection with Theoretical Guarantees [2.1506382989223782]
モデル不確実性を含む非線形変数選択のためのシンプルで統一的なフレームワークを開発する。
この手法は木アンサンブルのような微分不可能なモデルに対しても一般化可能であることを示す。
論文 参考訳(メタデータ) (2022-04-15T02:12:00Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
勾配推定は統計学と学習理論において重要である。
ここでは古典的な回帰設定を考えると、実値の正方形可積分 r.v.$Y$ が予測される。
代替推定法で得られた値に対して, 漸近的境界が改良されることを証明した。
論文 参考訳(メタデータ) (2020-06-26T15:19:43Z) - The Generalized Lasso with Nonlinear Observations and Generative Priors [63.541900026673055]
我々は、幅広い測定モデルで満たされるガウス下測度を仮定する。
この結果から, 局所埋込特性を仮定して, 均一回復保証まで拡張できることが示唆された。
論文 参考訳(メタデータ) (2020-06-22T16:43:35Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
このモデルに基づく最小二乗リスクに対する1パス, 固定段差勾配勾配の収束度を解析した。
特殊な場合として、ランダムなサンプリング点における値のノイズのない観測から単位区間上の実関数を推定するオンラインアルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-15T08:25:50Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
The inequality and non-asymptotic properties of approximation procedure with Polyak-Ruppert averaging。
一定のステップサイズと無限大となる反復数を持つ平均的反復数に対する中心極限定理(CLT)を証明する。
論文 参考訳(メタデータ) (2020-04-09T17:54:18Z) - Bayesian ODE Solvers: The Maximum A Posteriori Estimate [30.767328732475956]
常微分方程式の数値解は非線形ベイズ推論問題として当てはまることが確立されている。
後方推定の最大値は、前者に関連するヒルベルト空間の最適補間と一致する。
開発された方法論は、これらの推定器の収束を研究するための、新しくより自然なアプローチを提供する。
論文 参考訳(メタデータ) (2020-04-01T11:39:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。