論文の概要: Machine Psychology: Integrating Operant Conditioning with the Non-Axiomatic Reasoning System for Advancing Artificial General Intelligence Research
- arxiv url: http://arxiv.org/abs/2405.19498v1
- Date: Wed, 29 May 2024 20:23:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 19:06:28.651202
- Title: Machine Psychology: Integrating Operant Conditioning with the Non-Axiomatic Reasoning System for Advancing Artificial General Intelligence Research
- Title(参考訳): 機械心理学:人工汎用知能研究の促進のための非公理推論システムと操作条件の統合
- Authors: Robert Johansson,
- Abstract要約: 本稿では,AI(Artificial General Intelligence, AGI)研究を強化するための学際的枠組みであるマシン心理学を紹介する。
このフレームワークの中核となる前提は、適応が生物学的および人工知能の両方にとって重要であることである。
本研究は,OpenNARS for Applications を用いた3つの操作型学習タスクを用いて,このアプローチを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces an interdisciplinary framework called Machine Psychology, which merges principles from operant learning psychology with a specific Artificial Intelligence model, the Non-Axiomatic Reasoning System (NARS), to enhance Artificial General Intelligence (AGI) research. The core premise of this framework is that adaptation is crucial to both biological and artificial intelligence and can be understood through operant conditioning principles. The study assesses this approach via three operant learning tasks using OpenNARS for Applications (ONA): simple discrimination, changing contingencies, and conditional discrimination tasks. In the simple discrimination task, NARS demonstrated rapid learning, achieving perfect accuracy during both training and testing phases. The changing contingencies task showcased NARS's adaptability, as it successfully adjusted its behavior when task conditions were reversed. In the conditional discrimination task, NARS handled complex learning scenarios effectively, achieving high accuracy by forming and utilizing intricate hypotheses based on conditional cues. These findings support the application of operant conditioning as a framework for creating adaptive AGI systems. NARS's ability to operate under conditions of insufficient knowledge and resources, coupled with its sensorimotor reasoning capabilities, establishes it as a robust model for AGI. The Machine Psychology framework, by incorporating elements of natural intelligence such as continuous learning and goal-driven behavior, offers a scalable and flexible approach for real-world applications. Future research should investigate using enhanced NARS systems, more advanced tasks, and applying this framework to diverse, complex challenges to further progress the development of human-level AI.
- Abstract(参考訳): 本稿では,機械心理学という学際的枠組みを導入し,操作的学習心理学から特定の人工知能モデル,非公理推論システム(NARS)を融合させ,人工知能(AGI)の研究を強化する。
この枠組みの中核的な前提は、適応は生物学的および人工知能の両方にとって不可欠であり、操作的な条件付け原理によって理解できるということである。
本研究は,OpenNARS for Applications (ONA) を用いた3つの操作的学習タスクを通して,本手法を評価する。
単純な識別タスクでは、NARSは迅速な学習を示し、トレーニングとテストの段階で完全な精度を達成した。
タスク条件が逆転した際の動作の調整に成功し、NARSの適応性を示した。
条件付き識別タスクにおいて、NARSは複雑な学習シナリオを効果的に処理し、条件付きキューに基づいて複雑な仮説を形成し、活用することで高い精度を達成する。
これらの知見は適応型AGIシステム構築のフレームワークとしてのオペラントコンディショニングの活用を支援する。
NARSの知識と資源不足の条件下での運用能力は、感覚運動の推論能力と相まって、AGIの堅牢なモデルとして確立されている。
Machine Psychologyフレームワークは、継続的学習やゴール駆動行動といった自然知性の要素を取り入れることで、現実世界のアプリケーションにスケーラブルで柔軟なアプローチを提供する。
今後の研究は、強化されたNARSシステム、より高度なタスクを使用して、このフレームワークを多種多様な複雑な課題に適用し、人間レベルのAIの開発をさらに進展させるべきである。
関連論文リスト
- Synthesizing Evolving Symbolic Representations for Autonomous Systems [2.4233709516962785]
本稿では,その経験をスクラッチからPDDL表現に合成し,時間とともに更新できるオープンエンド学習システムを提案する。
a)選択肢を発見する、(b)選択肢を使って環境を探索する、(c)収集した知識を抽象化する、(d)計画。
論文 参考訳(メタデータ) (2024-09-18T07:23:26Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
本稿では,人工知能(AGI)モデルとその前駆体の性能と動作を分類する枠組みを提案する。
このフレームワークは、AGIのパフォーマンス、一般性、自律性のレベルを導入し、モデルを比較し、リスクを評価し、AGIへの道筋に沿って進捗を測定する共通の言語を提供する。
論文 参考訳(メタデータ) (2023-11-04T17:44:58Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Neuroevolution is a Competitive Alternative to Reinforcement Learning
for Skill Discovery [12.586875201983778]
深層強化学習(Deep Reinforcement Learning, RL)は、複雑な制御タスクを解決するために神経ポリシーをトレーニングするための強力なパラダイムとして登場した。
品質多様性(QD)手法は,スキル発見のための情報理論強化RLの代替手段であることを示す。
論文 参考訳(メタデータ) (2022-10-06T11:06:39Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
我々は、AI(Artificial General Intelligence, AGI)の検索は、人間レベルの知能よりもはるかに低いレベルから始まるべきだと論じる。
我々の仮説は、エージェントが環境の中で行動するとき、学習は感覚フィードバックによって起こるというものである。
環境反応から学習する生物学的にインスパイアされた人工ニューラルネットワークを進化させる手法を評価する。
論文 参考訳(メタデータ) (2022-07-27T15:30:50Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
RAISAワークショップは、堅牢な人工知能(AI)と機械学習(ML)システムの研究、開発、応用に焦点を当てる。
特定のMLアルゴリズムに関してロバストネスを研究するのではなく、システムアーキテクチャのレベルでロバストネスの保証を検討することを目的としています。
論文 参考訳(メタデータ) (2022-02-10T01:15:50Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
本研究では,時間論理仕様を満たすための学習課題を,未知の環境下でエージェントのグループで検討する。
我々は、時間論理仕様のための最初のマルチエージェント強化学習手法を開発した。
主アルゴリズムの正確性と収束性を保証する。
論文 参考訳(メタデータ) (2021-02-01T01:13:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。