論文の概要: Collective Variable Free Transition Path Sampling with Generative Flow Network
- arxiv url: http://arxiv.org/abs/2405.19961v3
- Date: Thu, 18 Jul 2024 07:04:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 20:32:20.302616
- Title: Collective Variable Free Transition Path Sampling with Generative Flow Network
- Title(参考訳): 生成フローネットワークを用いた集団可変自由遷移経路サンプリング
- Authors: Kiyoung Seong, Seonghyun Park, Seonghwan Kim, Woo Youn Kim, Sungsoo Ahn,
- Abstract要約: 我々は,集団変数(CV)に頼ることなく,生成フローネットワーク(GFlowNets)を用いて遷移経路のサンプルを作成することを提案する。
本研究では, 目標分布と生成器の2乗対数比を最小化することにより, 遷移経路上での償却エネルギーベースサンプリングとして問題を再構築し, 神経バイアス電位を訓練する。
TPS-GFNと呼ばれる我々の手法は、従来のCVフリー機械学習手法よりも現実的で多様な遷移経路を生成する。
- 参考スコア(独自算出の注目度): 10.210248065533133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding transition paths between meta-stable states in molecular systems is fundamental for material design and drug discovery. However, sampling these paths via unbiased molecular dynamics simulations is computationally prohibitive due to the high energy barriers between the meta-stable states. Recent machine learning approaches are often restricted to simple systems or rely on collective variables (CVs) extracted from expensive domain knowledge. In this work, we propose to leverage generative flow networks (GFlowNets) to sample transition paths without relying on CVs. We reformulate the problem as amortized energy-based sampling over transition paths and train a neural bias potential by minimizing the squared log-ratio between the target distribution and the generator, derived from the flow matching objective of GFlowNets. Our evaluation on three proteins (Alanine Dipeptide, Polyproline Helix, and Chignolin) demonstrates that our approach, called TPS-GFN, generates more realistic and diverse transition paths than the previous CV-free machine learning approach.
- Abstract(参考訳): 分子系における準安定状態間の遷移経路を理解することは、物質設計と薬物発見に不可欠である。
しかし、準安定状態間の高エネルギー障壁のため、非バイアス分子動力学シミュレーションによるこれらの経路のサンプリングは計算的に禁止されている。
最近の機械学習アプローチは、しばしば単純なシステムに制限されるか、高価なドメイン知識から抽出された集合変数(CV)に依存している。
本研究では,生成フローネットワーク(GFlowNets)をCVに依存しない遷移経路のサンプリングに活用することを提案する。
我々は、GFlowNetsのフローマッチング目的から得られたターゲット分布とジェネレータの2乗対数比を最小化することにより、遷移経路上での償却エネルギーベースのサンプリングとして問題を再構築し、ニューラルバイアスポテンシャルを訓練する。
我々の3つのタンパク質(アラニンジペプチド、ポリプロリンヘリックス、チグノリン)に対する評価は、我々のアプローチであるTPS-GFNが、従来のCVフリー機械学習アプローチよりも現実的で多様な遷移経路を生成することを示している。
関連論文リスト
- Transition Path Sampling with Boltzmann Generator-based MCMC Moves [49.69940954060636]
サンプル遷移経路への現在のアプローチはマルコフ連鎖モンテカルロを用いており、新しい経路を見つけるために時間集約的な分子動力学シミュレーションに依存している。
我々の手法は、分子のボルツマン分布からガウスへ写像する正規化フローの潜在空間で機能し、分子シミュレーションを必要とせずに新しい経路を提案する。
論文 参考訳(メタデータ) (2023-12-08T20:05:33Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - Diffusion Methods for Generating Transition Paths [6.222135766747873]
本研究では,スコアベース生成モデルを用いて準安定状態間の稀な遷移をシミュレートする。
本稿では,チェーンベースアプローチとミッドポイントベースアプローチの2つの新しい経路生成手法を提案する。
M"uller電位とアラニンジペプチドが生成する遷移経路の数値的な結果は、これらのアプローチがデータリッチとデータスカースの両方で有効であることを示す。
論文 参考訳(メタデータ) (2023-09-19T03:03:03Z) - Equivariant flow matching [0.9208007322096533]
等変連続正規化流(CNF)の新しい訓練目標である等変フローマッチングを導入する。
等変流マッチングは、標的エネルギーの物理対称性を利用して、同変CNFの効率的でシミュレーションなしな訓練を行う。
この結果から,同変フローマッチングの対象は,従来の手法に比べて,より短い積分経路,サンプリング効率の向上,スケーラビリティの向上を図っている。
論文 参考訳(メタデータ) (2023-06-26T19:40:10Z) - Conditioning Normalizing Flows for Rare Event Sampling [61.005334495264194]
本稿では,ニューラルネットワーク生成構成に基づく遷移経路サンプリング手法を提案する。
本手法は遷移領域の熱力学と運動学の両方の解法を可能にすることを示す。
論文 参考訳(メタデータ) (2022-07-29T07:56:10Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Stochastic Optimal Control for Collective Variable Free Sampling of
Molecular Transition Paths [60.254555533113674]
分子系の2つの準安定状態間の遷移経路をサンプリングする問題を考察する。
本稿では,その遷移をサンプリングする機械学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-27T14:01:06Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。