論文の概要: Transition Path Sampling with Improved Off-Policy Training of Diffusion Path Samplers
- arxiv url: http://arxiv.org/abs/2405.19961v5
- Date: Sat, 25 Jan 2025 08:33:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 20:37:59.672481
- Title: Transition Path Sampling with Improved Off-Policy Training of Diffusion Path Samplers
- Title(参考訳): 拡散路サンプリング器のオフポリティトレーニング改善による遷移路サンプリング
- Authors: Kiyoung Seong, Seonghyun Park, Seonghwan Kim, Woo Youn Kim, Sungsoo Ahn,
- Abstract要約: 本稿では,拡散経路サンプリング問題に対処するために拡散経路サンプリング器(DPS)を訓練する新しい手法を提案する。
DPSにより誘導される経路分布と遷移経路分布との対数分散を最小化することにより、遷移経路分布からの償却サンプリングとして問題を再構築する。
我々は、TPS-DPSと呼ばれる我々のアプローチを、合成系、小ペプチド、高速折りたたみタンパク質で広範囲に評価し、既存のベースラインよりも現実的で多様な遷移経路を生み出すことを実証した。
- 参考スコア(独自算出の注目度): 10.210248065533133
- License:
- Abstract: Understanding transition pathways between two meta-stable states of a molecular system is crucial to advance drug discovery and material design. However, unbiased molecular dynamics (MD) simulations are computationally infeasible because of the high energy barriers that separate these states. Although recent machine learning techniques are proposed to sample rare events, they are often limited to simple systems and rely on collective variables (CVs) derived from costly domain expertise. In this paper, we introduce a novel approach that trains diffusion path samplers (DPS) to address the transition path sampling (TPS) problem without requiring CVs. We reformulate the problem as an amortized sampling from the transition path distribution by minimizing the log-variance divergence between the path distribution induced by DPS and the transition path distribution. Based on the log-variance divergence, we propose learnable control variates to reduce the variance of gradient estimators and the off-policy training objective with replay buffers and simulated annealing techniques to improve sample efficiency and diversity. We also propose a scale-based equivariant parameterization of the bias forces to ensure scalability for large systems. We extensively evaluate our approach, termed TPS-DPS, on a synthetic system, small peptide, and challenging fast-folding proteins, demonstrating that it produces more realistic and diverse transition pathways than existing baselines.
- Abstract(参考訳): 分子系の2つの準安定状態間の遷移経路を理解することは、薬物発見と物質設計を進めるために重要である。
しかし、これらの状態を分離する高エネルギー障壁のため、非バイアス分子動力学(MD)シミュレーションは計算不可能である。
最近の機械学習技術は稀な事象をサンプリングするために提案されているが、単純なシステムに限られており、高価なドメイン専門知識から派生した集合変数(CV)に依存していることが多い。
本稿では,移動経路サンプリング(TPS)問題にCVを必要とせずに対処するために拡散経路サンプリング器(DPS)を訓練する新しい手法を提案する。
DPSにより誘導される経路分布と遷移経路分布との対数分散を最小化することにより、遷移経路分布からの償却サンプリングとして問題を再構築する。
ログ分散のばらつきに基づいて、勾配推定器のばらつきを低減するための学習可能な制御変数と、バッファを再生し、サンプル効率と多様性を改善するための模擬アニール技術を用いて、オフポリティクス学習目標を提案する。
また、大規模システムのスケーラビリティを確保するため、バイアス力のスケールベース同変パラメータ化を提案する。
我々は、TPS-DPSと呼ばれる我々のアプローチを、合成系、小ペプチド、高速折りたたみタンパク質で広範囲に評価し、既存のベースラインよりも現実的で多様な遷移経路を生み出すことを実証した。
関連論文リスト
- Generalized Flow Matching for Transition Dynamics Modeling [14.76793118877456]
局所力学から非線形性を学習することでシミュレーションをウォームアップするデータ駆動手法を提案する。
具体的には、局所力学データからポテンシャルエネルギー関数を推定し、2つの準安定状態間の可塑性経路を求める。
提案手法の有効性を検証するため, 合成分子系と実世界の分子系の両方において, 確率的経路をサンプリングする手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-10-19T15:03:39Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Transition Path Sampling with Boltzmann Generator-based MCMC Moves [49.69940954060636]
サンプル遷移経路への現在のアプローチはマルコフ連鎖モンテカルロを用いており、新しい経路を見つけるために時間集約的な分子動力学シミュレーションに依存している。
我々の手法は、分子のボルツマン分布からガウスへ写像する正規化フローの潜在空間で機能し、分子シミュレーションを必要とせずに新しい経路を提案する。
論文 参考訳(メタデータ) (2023-12-08T20:05:33Z) - DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud
Registration [73.37538551605712]
ポイントクラウド登録(PCR)は、2つのポイントクラウド間の相対的な厳密な変換を推定する。
本稿では, PCR を拡散確率過程として定式化し, ノイズ変換を基礎的真理にマッピングする。
実験ではDiffusionPCRの有効性を示し,3Dおよび3DLoMatchに対する最先端の登録リコール率(95.3%/81.6%)を得た。
論文 参考訳(メタデータ) (2023-12-05T18:59:41Z) - Diffusion Methods for Generating Transition Paths [6.222135766747873]
本研究では,スコアベース生成モデルを用いて準安定状態間の稀な遷移をシミュレートする。
本稿では,チェーンベースアプローチとミッドポイントベースアプローチの2つの新しい経路生成手法を提案する。
M"uller電位とアラニンジペプチドが生成する遷移経路の数値的な結果は、これらのアプローチがデータリッチとデータスカースの両方で有効であることを示す。
論文 参考訳(メタデータ) (2023-09-19T03:03:03Z) - Enhanced Sampling of Configuration and Path Space in a Generalized
Ensemble by Shooting Point Exchange [71.49868712710743]
長寿命状態間の遷移によって引き起こされる稀な事象をシミュレートする新しい手法を提案する。
このスキームは遷移経路サンプリングシミュレーションの効率を大幅に向上させる。
力学を歪ませることなく、分子過程の熱力学、動力学、反応座標に関する情報を得る。
論文 参考訳(メタデータ) (2023-02-17T08:41:31Z) - Conditioning Normalizing Flows for Rare Event Sampling [61.005334495264194]
本稿では,ニューラルネットワーク生成構成に基づく遷移経路サンプリング手法を提案する。
本手法は遷移領域の熱力学と運動学の両方の解法を可能にすることを示す。
論文 参考訳(メタデータ) (2022-07-29T07:56:10Z) - Stochastic Optimal Control for Collective Variable Free Sampling of
Molecular Transition Paths [60.254555533113674]
分子系の2つの準安定状態間の遷移経路をサンプリングする問題を考察する。
本稿では,その遷移をサンプリングする機械学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-27T14:01:06Z) - Generative methods for sampling transition paths in molecular dynamics [0.0]
1つの準安定状態と他の状態とをリンクする遷移経路のシミュレーションは、直接数値法により困難である。
本稿では,変分オートエンコーダなどの生成モデルに基づくサンプリング手法と,強化学習に基づく重要サンプリング手法について検討する。
論文 参考訳(メタデータ) (2022-05-05T17:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。