論文の概要: Structure Gaussian SLAM with Manhattan World Hypothesis
- arxiv url: http://arxiv.org/abs/2405.20031v1
- Date: Thu, 30 May 2024 13:16:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-31 14:28:22.564770
- Title: Structure Gaussian SLAM with Manhattan World Hypothesis
- Title(参考訳): マンハッタン世界仮説を用いた構造ガウスSLAM
- Authors: Shuhong Liu, Heng Zhou, Liuzhuozheng Li, Yun Liu, Tianchen Deng, Yiming Zhou, Mingrui Li,
- Abstract要約: 幾何学的精度と完全性を高めるRGB-DシステムであるManhattan Gaussian SLAM(MG-SLAM)を提案する。
MG-SLAMは、構造されたシーンから導かれた融合した線分をシームレスに統合することにより、テクスチャレス屋内領域におけるロバストな追跡を確実にする。
- 参考スコア(独自算出の注目度): 5.856833456667483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian SLAM systems have made significant advancements in improving the efficiency and fidelity of real-time reconstructions. However, these systems often encounter incomplete reconstructions in complex indoor environments, characterized by substantial holes due to unobserved geometry caused by obstacles or limited view angles. To address this challenge, we present Manhattan Gaussian SLAM (MG-SLAM), an RGB-D system that leverages the Manhattan World hypothesis to enhance geometric accuracy and completeness. By seamlessly integrating fused line segments derived from structured scenes, MG-SLAM ensures robust tracking in textureless indoor areas. Moreover, The extracted lines and planar surface assumption allow strategic interpolation of new Gaussians in regions of missing geometry, enabling efficient scene completion. Extensive experiments conducted on both synthetic and real-world scenes demonstrate that these advancements enable our method to achieve state-of-the-art performance, marking a substantial improvement in the capabilities of Gaussian SLAM systems.
- Abstract(参考訳): ガウスのSLAMシステムは、リアルタイム再構築の効率性と忠実性を向上させるために大きな進歩を遂げた。
しかし、これらのシステムは複雑な屋内環境において、障害物や限られた視角によって引き起こされる未観測の幾何学により、実質的な穴を特徴とする不完全な再構成に遭遇することが多い。
この課題に対処するために,マンハッタンワールド仮説を利用したRGB-DシステムであるManhattan Gaussian SLAM(MG-SLAM)を提案する。
MG-SLAMは、構造されたシーンから導かれた融合した線分をシームレスに統合することにより、テクスチャレス屋内領域におけるロバストな追跡を確実にする。
さらに、抽出された線と平面面仮定により、欠測した幾何学領域における新しいガウスの戦略的補間が可能となり、効率的なシーン補完が可能となった。
合成シーンと実世界のシーンの両方で行われた大規模な実験により、これらの手法が最先端の性能を実現し、ガウスSLAMシステムの能力を大幅に向上することを示す。
関連論文リスト
- HS-SLAM: Hybrid Representation with Structural Supervision for Improved Dense SLAM [38.82194947459594]
NeRFベースのSLAMは、最近、追跡と再構築において有望な成果を上げている。
これらの問題に対処するためにHS-SLAMを提案する。
本稿では,ハッシュグリッド,トリプレーン,ワンブロブの相補的強みを組み合わせたハイブリッド符号化ネットワークを提案する。
論文 参考訳(メタデータ) (2025-03-27T17:59:54Z) - SplatMAP: Online Dense Monocular SLAM with 3D Gaussian Splatting [7.2305711760924085]
本稿では,高忠実度3DGSに高密度SLAMを組み込むことにより,リアルタイム・高密度化を実現するフレームワークを提案する。
本手法では,SLAMから高密度点雲を利用することにより,ガウスモデルを動的に更新・密度化するSLAM-Informed Adaptive Densificationを導入する。
ReplicaとTUM-RGBDデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2025-01-13T02:28:13Z) - SolidGS: Consolidating Gaussian Surfel Splatting for Sparse-View Surface Reconstruction [48.228533595941556]
この問題に対処するために,SolidGSと呼ばれる新しい手法を提案する。
再構成された幾何は多視点では非常に不整合であることがわかった。
幾何学的正規化と単分子正規化の助けを借りて,スパース面の再構成における優れた性能を実現する。
論文 参考訳(メタデータ) (2024-12-19T21:04:43Z) - 2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction [3.8879997968084137]
高忠実度屋内シーン再構築のための2次元ガウス平滑化手法である2DGS-Roomを導入する。
我々は2次元ガウス分布を制御するためにシード誘導機構を用い、適応的な成長と刈り取り機構によって動的に最適化されたシードポイントの密度を推定した。
幾何的精度をさらに向上するために,単眼深度と通常の先行値を組み合わせて,細部と無テクスチャ領域の制約をそれぞれ与える。
論文 参考訳(メタデータ) (2024-12-04T16:17:47Z) - G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian SplattingはSLAMシステムにおける代替シーン表現として期待できる結果を示した。
本稿では,RGBのみの高密度SLAMシステムであるIG-SLAMについて述べる。
我々は、最先端のRGBのみのSLAMシステムと競合する性能を示し、高速な動作速度を実現する。
論文 参考訳(メタデータ) (2024-08-02T09:07:31Z) - Simultaneous Map and Object Reconstruction [66.66729715211642]
本稿では,LiDARから大規模都市景観を動的に再現する手法を提案する。
我々は、最近の新しいビュー合成法から着想を得て、大域的な最適化として再構築問題を提起する。
連続動作の慎重なモデリングにより, 回転するLiDARセンサの回転シャッター効果を補うことができる。
論文 参考訳(メタデータ) (2024-06-19T23:53:31Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [5.112375652774415]
本稿では,SDFと3DGSを統合し,正確な幾何再構成とリアルタイムレンダリングを行う統合最適化フレームワークを提案する。
本手法は, 表面再構成と新しいビュー合成の両面において, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-30T03:46:59Z) - SLAIM: Robust Dense Neural SLAM for Online Tracking and Mapping [15.63276368052395]
ニューラルラジアンスフィールドSLAM(NeRF-SLAM)に適した,新しい粗い粒度追跡モデルを提案する。
既存の NeRF-SLAM システムは、従来の SLAM アルゴリズムに比べて、追跡性能が劣っている。
局所バンドル調整とグローバルバンドル調整の両方を実装し、ロバストな(粗大な)(KL正規化器)と正確な(KL正規化器)SLAMソリューションを生成する。
論文 参考訳(メタデータ) (2024-04-17T14:23:28Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering [83.19049705653072]
ガウススプレイティング最適化の過程で、その構造が意図的に保存されていない場合、シーンの幾何学は徐々に悪化する。
我々はこの問題を緩和するためにGeoGaussianと呼ばれる新しいアプローチを提案する。
提案するパイプラインは、新しいビュー合成と幾何再構成において最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-03-17T20:06:41Z) - SGS-SLAM: Semantic Gaussian Splatting For Neural Dense SLAM [5.144010652281121]
SGS-SLAMはSplattingに基づく最初の意味的視覚的SLAMシステムである。
外観幾何学とマルチチャネル最適化による意味的特徴は、ニューラル暗黙のSLAMシステムの過度な制限に対処する。
カメラポーズ推定、マップ再構成、正確なセマンティックセグメンテーション、およびオブジェクトレベルの幾何精度において最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-02-05T18:03:53Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
多視点RGB画像からの室内シーンの再構成は、平坦領域とテクスチャレス領域の共存により困難である。
近年の手法では、予測された表面正規化によって支援されたニューラルラジアンス場を利用してシーン形状を復元している。
本研究は, 上記の制限に対処して, 高忠実度表面を細かな詳細で再構築することを目的とする。
論文 参考訳(メタデータ) (2023-09-14T12:05:29Z) - GO-SLAM: Global Optimization for Consistent 3D Instant Reconstruction [45.49960166785063]
GO-SLAMは、リアルタイムでポーズと3D再構成をグローバルに最適化するディープラーニングベースの高密度ビジュアルSLAMフレームワークである。
さまざまな合成および実世界のデータセットの結果から、GO-SLAMはロバスト性や復元精度の追跡において最先端のアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2023-09-05T17:59:58Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAMは、カメラポーズと階層的なニューラル暗黙マップ表現を同時に最適化するRGB SLAMシステムである。
近年のRGB-D SLAMシステムと競合する高密度マッピング,追跡,新しいビュー合成において,高い性能を示す。
論文 参考訳(メタデータ) (2023-02-07T17:06:34Z) - Dense RGB-D-Inertial SLAM with Map Deformations [25.03159756734727]
密結合型RGB-D-慣性SLAMシステムを提案する。
我々は,RGB-DのみのSLAMシステムよりも,低テクスチャ,低幾何学的変動の速い動きや周期に対して,より堅牢であることを示す。
論文 参考訳(メタデータ) (2022-07-22T08:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。