論文の概要: A Staged Approach using Machine Learning and Uncertainty Quantification to Predict the Risk of Hip Fracture
- arxiv url: http://arxiv.org/abs/2405.20071v1
- Date: Thu, 30 May 2024 14:01:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:08:52.139138
- Title: A Staged Approach using Machine Learning and Uncertainty Quantification to Predict the Risk of Hip Fracture
- Title(参考訳): 機械学習と不確かさ定量化による股関節骨折のリスク予測
- Authors: Anjum Shaik, Kristoffer Larsen, Nancy E. Lane, Chen Zhao, Kuan-Jui Su, Joyce H. Keyak, Qing Tian, Qiuying Sha, Hui Shen, Hong-Wen Deng, Weihua Zhou,
- Abstract要約: 本研究は, 高齢者および中高年者における股関節骨折リスクの予測に焦点をあてる。
本稿では,高度な画像と臨床データを組み合わせて予測性能を向上させる新しいステージドモデルを提案する。
- 参考スコア(独自算出の注目度): 7.28435301162289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite advancements in medical care, hip fractures impose a significant burden on individuals and healthcare systems. This paper focuses on the prediction of hip fracture risk in older and middle-aged adults, where falls and compromised bone quality are predominant factors. We propose a novel staged model that combines advanced imaging and clinical data to improve predictive performance. By using CNNs to extract features from hip DXA images, along with clinical variables, shape measurements, and texture features, our method provides a comprehensive framework for assessing fracture risk. A staged machine learning-based model was developed using two ensemble models: Ensemble 1 (clinical variables only) and Ensemble 2 (clinical variables and DXA imaging features). This staged approach used uncertainty quantification from Ensemble 1 to decide if DXA features are necessary for further prediction. Ensemble 2 exhibited the highest performance, achieving an AUC of 0.9541, an accuracy of 0.9195, a sensitivity of 0.8078, and a specificity of 0.9427. The staged model also performed well, with an AUC of 0.8486, an accuracy of 0.8611, a sensitivity of 0.5578, and a specificity of 0.9249, outperforming Ensemble 1, which had an AUC of 0.5549, an accuracy of 0.7239, a sensitivity of 0.1956, and a specificity of 0.8343. Furthermore, the staged model suggested that 54.49% of patients did not require DXA scanning. It effectively balanced accuracy and specificity, offering a robust solution when DXA data acquisition is not always feasible. Statistical tests confirmed significant differences between the models, highlighting the advantages of the advanced modeling strategies. Our staged approach could identify individuals at risk with a high accuracy but reduce the unnecessary DXA scanning. It has great promise to guide interventions to prevent hip fractures with reduced cost and radiation.
- Abstract(参考訳): 医療の進歩にもかかわらず、股関節骨折は個人や医療システムに重大な負担を課している。
本研究は, 転倒・骨質の低下が主な要因である高齢者および中高年者における股関節骨折リスクの予測に焦点をあてる。
本稿では,高度な画像と臨床データを組み合わせて予測性能を向上させる新しいステージドモデルを提案する。
CNNを用いて股関節DXA画像の特徴と臨床変数,形状計測,テクスチャ特徴を抽出することにより,骨折のリスクを評価するための総合的な枠組みを提供する。
2つのアンサンブルモデル: Ensemble 1 (クリニカル変数のみ) と Ensemble 2 (クリニカル変数とDXAイメージング機能) である。
この段階的なアプローチは、さらなる予測にDXAの特徴が必要であるかどうかを決定するために、Ensemble 1からの不確実性定量化を使用した。
アンサンブル2は最高性能を示し、AUCは0.9541、精度は0.9195、感度は0.8078、特異度は0.9427であった。
また、AUC 0.8486、精度 0.8611、感度 0.5578、特異性 0.9249、AUC 0.5549、精度 0.7239、感度 0.1956、特異性 0.8343 も良好に動作した。
さらに、ステージドモデルでは、54.49%の患者がDXAスキャンを必要としていないことが示唆された。
DXAデータ取得が常に可能とは限らない場合に、堅牢なソリューションを提供する。
統計的テストにより、モデル間で大きな違いが確認され、高度なモデリング戦略の利点が強調された。
我々の段階的なアプローチは、高い精度で個人を特定できるが、不要なDXAスキャンを減らすことができる。
費用と放射線を減らして股関節骨折を予防するための介入を導くことは、非常に有望である。
関連論文リスト
- Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
本報告では, 全身性炎症性反応症候群, 早期警戒スコア, クイックシークエンシャル臓器不全評価など, 従来の敗血症スクリーニングツールの限界について検討する。
本稿では,機械学習技術 - ランダムフォレスト, エクストリームグラディエントブースティング, 決定木モデル - を用いて, セプシスの発症を予測することを提案する。
本研究は,これらのモデルについて,精度,精度,リコール,F1スコア,受信器動作特性曲線の下での領域といった重要な指標を用いて,個別かつ組み合わせたメタアンサンブルアプローチで評価する。
論文 参考訳(メタデータ) (2024-07-11T00:51:32Z) - Incorporating Anatomical Awareness for Enhanced Generalizability and Progression Prediction in Deep Learning-Based Radiographic Sacroiliitis Detection [0.8248058061511542]
本研究の目的は, 深層学習モデルに解剖学的認識を取り入れることで, 一般化性を高め, 疾患進行の予測を可能にするかを検討することである。
モデルの性能は, 受信機動作特性曲線(AUC)下の領域, 精度, 感度, 特異性を用いて比較した。
論文 参考訳(メタデータ) (2024-05-12T20:02:25Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - DeepCOVID-Fuse: A Multi-modality Deep Learning Model Fusing Chest
X-Radiographs and Clinical Variables to Predict COVID-19 Risk Levels [8.593516170110203]
DeepCOVID-Fuseは、新型コロナウイルス患者のリスクレベルを予測するディープラーニング融合モデルである。
CXRと臨床変数で訓練されたDeepCOVID-Fuseの精度は0.658であり、AUCは0.842である。
論文 参考訳(メタデータ) (2023-01-20T20:54:25Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Learning Clinical Concepts for Predicting Risk of Progression to Severe
COVID-19 [17.781861866125023]
大手医療機関のデータを用いて、重度の新型コロナウイルスの進行を予測する生存モデルを開発する。
i) 利用可能なすべての特徴から構築された制約のないモデル,(ii) リスク予測器を訓練する前に少数の臨床概念を学習するパイプラインである。
論文 参考訳(メタデータ) (2022-08-28T02:59:35Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Critical Evaluation of Deep Neural Networks for Wrist Fracture Detection [1.0617212070722408]
関節リウマチは最も頻度の高い骨折である。
近年のDeep Learning(DL)分野の進歩は、畳み込みニューラルネットワークを用いて手首骨折検出を自動化できることを示している。
以上の結果から,DeepWristのような最先端のアプローチは,挑戦的なテストセットにおいて大幅に性能が低下していることが判明した。
論文 参考訳(メタデータ) (2020-12-04T13:35:36Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。