論文の概要: Analysis of a multi-target linear shrinkage covariance estimator
- arxiv url: http://arxiv.org/abs/2405.20086v1
- Date: Thu, 30 May 2024 14:16:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:08:52.117248
- Title: Analysis of a multi-target linear shrinkage covariance estimator
- Title(参考訳): マルチターゲット線形縮合共分散推定器の解析
- Authors: Benoit Oriol,
- Abstract要約: 我々は, 精密かつ実証的な平均値で, オラクルとテライトボナの多ターゲット線形収縮推定器を導出する。
様々な状況において、他の標準推定値よりも優れていることを実証的に示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-target linear shrinkage is an extension of the standard single-target linear shrinkage for covariance estimation. We combine several constant matrices - the targets - with the sample covariance matrix. We derive the oracle and a \textit{bona fide} multi-target linear shrinkage estimator with exact and empirical mean. In both settings, we proved its convergence towards the oracle under Kolmogorov asymptotics. Finally, we show empirically that it outperforms other standard estimators in various situations.
- Abstract(参考訳): マルチターゲット線形収縮は、共分散推定のための標準単一ターゲット線形収縮の拡張である。
いくつかの定数行列(ターゲット)とサンプル共分散行列を結合する。
我々は、正確な経験的平均を持つオラクルとマルチターゲット線形収縮推定器を導出する。
どちらの設定でも、コルモゴロフ漸近論の下では、神託への収束が証明された。
最後に,様々な状況において,他の標準推定値よりも優れていることを示す。
関連論文リスト
- Consistent Estimation of a Class of Distances Between Covariance Matrices [7.291687946822539]
我々は、それぞれの共分散行列に別々に適用される関数のトレースの和として表現できる距離の族に興味を持っている。
このクラスの距離推定器の挙動に関する統計的解析も行われている。
これらの推定器のガウス性を確立し、対応する手段と分散に対する閉形式表現を提供する中心極限定理を提案する。
論文 参考訳(メタデータ) (2024-09-18T07:36:25Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Multifidelity Covariance Estimation via Regression on the Manifold of Symmetric Positive Definite Matrices [0.42855555838080844]
我々の多様体回帰多相性(MRMF)共分散推定器は、多様体空間上の特定の誤差モデルの下での最大可能性推定器であることを示す。
MRMF推定器は最大1桁の精度で2乗推定誤差を低減できることを示す。
論文 参考訳(メタデータ) (2023-07-23T21:46:55Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
対称正定値多様体の対数ユークリッド幾何学を利用する共分散行列の多値推定器を導入する。
固定予算が与えられた推定器の平均二乗誤差を最小化する最適サンプル割り当て方式を開発した。
物理アプリケーションからのデータによるアプローチの評価は、ベンチマークと比較すると、より正確なメトリック学習と1桁以上のスピードアップを示している。
論文 参考訳(メタデータ) (2023-01-31T16:33:46Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
バイナリ密度比推定(DRE)は多くの最先端の機械学習アルゴリズムの基礎を提供する。
ブレグマン最小化の発散の観点から一般的な枠組みを開発する。
我々のフレームワークはバイナリDREでそれらのフレームワークを厳格に一般化する手法に導かれることを示す。
論文 参考訳(メタデータ) (2021-12-07T01:23:20Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - Large Non-Stationary Noisy Covariance Matrices: A Cross-Validation
Approach [1.90365714903665]
金融時系列のヘテロシデスティックな性質を利用する新しい共分散推定器を提案する。
断面次元と時系列次元の両方のノイズを減衰させることにより、我々は、競合する推定器に対する推定器の優位性を実証的に実証する。
論文 参考訳(メタデータ) (2020-12-10T15:41:17Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Kullback-Leibler の同一および独立に分布するサンプルからの発散は、様々な領域において重要な問題である。
単純で効果的な推定器の1つは、これらのサンプル間の近辺 k に基づいている。
論文 参考訳(メタデータ) (2020-02-26T16:37:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。