論文の概要: Robo-Instruct: Simulator-Augmented Instruction Alignment For Finetuning Code LLMs
- arxiv url: http://arxiv.org/abs/2405.20179v3
- Date: Fri, 11 Apr 2025 19:55:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-25 14:10:47.692869
- Title: Robo-Instruct: Simulator-Augmented Instruction Alignment For Finetuning Code LLMs
- Title(参考訳): ロボインストラクション:コードLLMのためのシミュレータ拡張インストラクションアライメント
- Authors: Zichao Hu, Junyi Jessy Li, Arjun Guha, Joydeep Biswas,
- Abstract要約: プログラム実行中にタスク固有のシミュレーション環境をオンザフライで合成するROBO-INSTRUCTを提案する。
ROBO-INSTRUCT は LLM に支援された後処理の手順を統合し,ロボットプログラムとの整合性を向上する。
- 参考スコア(独自算出の注目度): 42.31298987176411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code LLMs have shown promising results with converting tasks in natural language to programs that can be executed by service robots. We are interested in finetuning small, specialized LLMs for this purpose, but collecting datasets of task-program pairs specific to each robot is time-consuming and expensive. While approaches such as SELF-INSTRUCT and EVOL-INSTRUCT are capable of generating novel tasks given a few examples, they are unable to provide the corresponding programs that correctly abide by physical-world and robot-constraints using the provided programming interface. Using a simulator is a natural potential solution to checking for such constraints, but building simulation environments that can handle arbitrary tasks and their necessary objects and locations, is challenging. To address these challenges, we introduce ROBO-INSTRUCT, which synthesizes task-specific simulation environments on the fly during program execution, by opportunistically inferring entity properties and enforcing corresponding constraints based on how the entities are used in the task program. Additionally, ROBO-INSTRUCT integrates an LLM-aided post-processing procedure to refine instructions for better alignment with robot programs. We demonstrate the effectiveness of ROBO-INSTRUCT across multiple LLMs, showing that our fine-tuned models outperform all baseline methods and even match or surpass the performance of several larger and proprietary models.
- Abstract(参考訳): Code LLMは、自然言語でタスクをサービスロボットによって実行できるプログラムに変換するという有望な結果を示している。
この目的のために、小型で特殊なLLMを微調整することに興味がありますが、各ロボット固有のタスクプログラムペアのデータセットの収集には時間と費用がかかります。
SELF-INSTRUCT や EVOL-INSTRUCT のような手法は、いくつか例を挙げると新しいタスクを生成できるが、提供されたプログラミングインタフェースを使って物理世界やロボットの制約に正しく従うようなプログラムは提供できない。
しかし、任意のタスクや必要なオブジェクトや場所を処理できるシミュレーション環境を構築することは難しい。
これらの課題に対処するため,ROBO-INSTRUCTを導入し,プログラム実行中のタスク固有のシミュレーション環境を自動生成する。
さらに、ROBO-INSTRUCTはLLM支援された後処理手順を統合し、ロボットプログラムとの整合性を向上する命令を洗練する。
複数のLLMにおけるROBO-INSTRUCTの有効性を実証し、細調整されたモデルが全てのベースライン法を上回り、より大規模でプロプライエタリなモデルの性能に匹敵することを示した。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
実世界のマルチ制約命令に従うLLMの能力を評価するために設計された最初のベンチマークであるRealInstructを紹介する。
オープンソースモデルとプロプライエタリモデルのパフォーマンスギャップを解決するため,Decompose, Critique and Refine(DeCRIM)自己補正パイプラインを提案する。
この結果から,DeCRIMはフィードバックが弱い場合でも,RealInstructでは7.3%,IFEvalでは8.0%,Mistralでは7.3%向上した。
論文 参考訳(メタデータ) (2024-10-09T01:25:10Z) - Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
本稿では,人間とLLMの選好アライメントという2つのユニークな視点から導いた,新しい命令キュレーションアルゴリズムを提案する。
実験により,合成マルチモーダル命令を最大90%圧縮することにより,モデル性能の維持や改善が可能であることが示された。
論文 参考訳(メタデータ) (2024-09-27T08:20:59Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF)は、さまざまな領域で大きな可能性を証明している。
本稿では,軽量 (1B パラメータ) LLM のコード生成能力を改善するための RLAIF フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-28T17:16:03Z) - Trust the PRoC3S: Solving Long-Horizon Robotics Problems with LLMs and Constraint Satisfaction [38.683780057806516]
ロボット工学を応用した事前学習型大規模言語モデル(LLM)の最近の進歩は、単純なロボットタスクにおいてオープンな目標を達成するために、個々のスキルのセットをシークエンシングする能力を示している。
本稿では,機械的,幾何学的,物理的制約の集合の違反を避けることが必要な,連続パラメータ化スキルの集合に対するLLM計画の課題について検討する。
3つの異なる3次元領域にわたる実験により、提案手法であるPRoC3Sは、既存のベースラインよりもはるかに効率的かつ効果的に、連続パラメータに現実的な制約を課した幅広い複雑な操作タスクを解くことができることを示した。
論文 参考訳(メタデータ) (2024-06-08T20:56:14Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.673219028826173]
本稿では,OR-Instruct という,最適化モデル問題のための半自動データ合成フレームワークを提案する。
我々は、70億のパラメータ(ORLM)を持つ様々なオープンソースのLDMを訓練する。
結果として得られたモデルは、NL4OPT、MAMO、IndustrialORベンチマークにまたがって最先端のパフォーマンスを達成し、大幅な最適化モデリング能力を示す。
論文 参考訳(メタデータ) (2024-05-28T01:55:35Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
大規模な言語モデルは、制御シーケンスを適切に生成することで物理世界と相互作用することができない。
既存のLLMベースのアプローチでは、事前定義されたスキルや事前訓練されたサブ政治に頼ることでこの問題を回避することができる。
サブタスクプランナとモーションコントローラの両方をLLM+A(ffordance)と呼ぶフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T03:06:32Z) - LLM4PLC: Harnessing Large Language Models for Verifiable Programming of
PLCs in Industrial Control Systems [9.946058168276744]
LLM(Large Language Models)は、PLC(Programmable Logic Controllers)が運用する産業制御システム(ICS)のための有効なプログラムを作成できない。
本稿では,ユーザフィードバックと文法チェック,コンパイラ,SMV検証などの外部検証ツールを活用したユーザガイド型反復パイプラインを提案する。
GPT-3.5, GPT-4, Code Llama-7B, Code Llama-34B, Code Llama-34Bで完全なテストスイートを実行する。
論文 参考訳(メタデータ) (2024-01-08T23:52:42Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
事前訓練された大規模言語モデル(LLM)は、自然言語命令に対する応答性を改善するために微調整が必要である。
FedKSeedは、ランダムシードの有限セットによるゼロ階最適化を採用している。
サーバとクライアント間の通信要求を大幅に減らし、ランダムなシードをわずかに減らします。
論文 参考訳(メタデータ) (2023-12-11T13:03:21Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
我々は,大規模言語モデル(LLM)を利用して,様々なロボットタスクを最適化し,達成可能な報酬パラメータを定義する新しいパラダイムを提案する。
LLMが生成する中間インタフェースとして報酬を用いることで、ハイレベルな言語命令と修正のギャップを、低レベルなロボット動作に効果的に埋めることができる。
論文 参考訳(メタデータ) (2023-06-14T17:27:10Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
新プラットフォーム Resource-Aware AutoML (RA-AutoML)
RA-AutoMLは、フレキシブルで一般化されたアルゴリズムで、複数の目的に合わせた機械学習モデルを構築することができる。
論文 参考訳(メタデータ) (2020-10-30T19:37:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。