論文の概要: Entropy annealing for policy mirror descent in continuous time and space
- arxiv url: http://arxiv.org/abs/2405.20250v2
- Date: Thu, 6 Jun 2024 15:31:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 20:03:47.919268
- Title: Entropy annealing for policy mirror descent in continuous time and space
- Title(参考訳): 連続時間と空間におけるポリシミラー降下に対するエントロピーアニール
- Authors: Deven Sethi, David Šiška, Yufei Zhang,
- Abstract要約: 本研究では、エントロピー規則化値関数の勾配に基づいてポリシーを更新する連続時間ポリシーミラー降下ダイナミクスを解析する。
固定エントロピーレベルでは、力学は正規化問題の最適解に指数関数的に収束する。
- 参考スコア(独自算出の注目度): 2.8255028200738455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entropy regularization has been extensively used in policy optimization algorithms to regularize the optimization landscape and accelerate convergence; however, it comes at the cost of introducing an additional regularization bias. This work quantifies the impact of entropy regularization on the convergence of policy gradient methods for stochastic exit time control problems. We analyze a continuous-time policy mirror descent dynamics, which updates the policy based on the gradient of an entropy-regularized value function and adjusts the strength of entropy regularization as the algorithm progresses. We prove that with a fixed entropy level, the dynamics converges exponentially to the optimal solution of the regularized problem. We further show that when the entropy level decays at suitable polynomial rates, the annealed flow converges to the solution of the unregularized problem at a rate of $\mathcal O(1/S)$ for discrete action spaces and, under suitable conditions, at a rate of $\mathcal O(1/\sqrt{S})$ for general action spaces, with $S$ being the gradient flow time. This paper explains how entropy regularization improves policy optimization, even with the true gradient, from the perspective of convergence rate.
- Abstract(参考訳): エントロピー正則化は、最適化ランドスケープを正規化し、収束を加速するためにポリシー最適化アルゴリズムで広く用いられているが、追加の正則化バイアスを導入するコストが伴う。
この研究は、確率的出口時間制御問題に対するポリシー勾配法の収束に対するエントロピー正則化の影響を定量化する。
本研究では,エントロピー正規化値関数の勾配に基づいてポリシーを更新し,アルゴリズムの進行に応じてエントロピー正規化の強度を調整する連続時間ポリシーミラー降下ダイナミクスを解析する。
固定エントロピーレベルでは、力学は正規化問題の最適解に指数関数的に収束する。
さらに、適切な多項式速度でエントロピー準位が減衰すると、アニール流は離散的な作用空間に対して$\mathcal O(1/S)$と、一般的な作用空間に対して$\mathcal O(1/\sqrt{S})$と、勾配流時である$S$で非正規化問題の解に収束する。
本稿では, 収束率の観点から, 真の勾配であっても, エントロピー正則化が政策最適化をいかに改善するかを説明する。
関連論文リスト
- Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - Optimal scheduling of entropy regulariser for continuous-time
linear-quadratic reinforcement learning [9.779769486156631]
ここで、エージェントは最適な緩和ポリシーに従って分散されたノイズ制御を生成することで環境と相互作用する。
この探索-探索トレードオフはエントロピー正則化の強さによって決定される。
どちらの学習アルゴリズムも、$mathcalO(sqrtN)$(対数係数まで)を$N$のエピソードよりも高く、文献から最もよく知られた結果と一致することを証明している。
論文 参考訳(メタデータ) (2022-08-08T23:36:40Z) - Linear convergence of a policy gradient method for finite horizon
continuous time stochastic control problems [3.7971225066055765]
本稿では,一般連続時空制御問題に対する確率収束勾配法を提案する。
アルゴリズムは制御点に線形に収束し、ステップごとのポリシーに対して安定であることを示す。
論文 参考訳(メタデータ) (2022-03-22T14:17:53Z) - Beyond Exact Gradients: Convergence of Stochastic Soft-Max Policy Gradient Methods with Entropy Regularization [20.651913793555163]
古典的エントロピー正規化政策勾配法をソフトマックス政策パラメトリゼーションで再検討する。
提案したアルゴリズムに対して,大域的最適収束結果と$widetildemathcalO(frac1epsilon2)$のサンプル複雑性を確立する。
論文 参考訳(メタデータ) (2021-10-19T17:21:09Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - Linear Convergence of Entropy-Regularized Natural Policy Gradient with
Linear Function Approximation [30.02577720946978]
線形関数近似を用いたエントロピー規則化NPGの有限時間収束解析を確立した。
エントロピー規則化NPGは関数近似誤差までのエンフィナール収束を示すことを示す。
論文 参考訳(メタデータ) (2021-06-08T04:30:39Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
本稿では,正規化RLを解くためのGPMDアルゴリズムを提案する。
我々は,このアルゴリズムが次元自由な方法で,全範囲の学習率に線形に収束することを実証した。
論文 参考訳(メタデータ) (2021-05-24T02:21:34Z) - Iterative Amortized Policy Optimization [147.63129234446197]
政策ネットワークは、継続的制御のための深層強化学習(RL)アルゴリズムの中心的な特徴である。
変分推論の観点からは、ポリシーネットワークは、ポリシー分布を直接ではなく、ネットワークパラメータを最適化する、テキスト化最適化の一形態である。
我々は,反復的アモート化ポリシ最適化により,ベンチマーク連続制御タスクの直接アモート化よりも性能が向上することが実証された。
論文 参考訳(メタデータ) (2020-10-20T23:25:42Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
自然政策勾配法(NPG)は、最も広く使われている政策最適化アルゴリズムの一つである。
我々は,ソフトマックスパラメータ化の下で,エントロピー規則化NPG法に対する収束保証を開発する。
この結果から, エントロピー正則化の役割を浮き彫りにした。
論文 参考訳(メタデータ) (2020-07-13T17:58:41Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives [97.16266088683061]
この論文は、運動量に基づく最適化アルゴリズムにおいてシンプレクティックな離散化スキームが重要であることを厳格に証明している。
これは加速収束を示すアルゴリズムの特性を提供する。
論文 参考訳(メタデータ) (2020-02-28T00:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。