論文の概要: Online network topology shapes personal narratives and hashtag generation
- arxiv url: http://arxiv.org/abs/2405.20457v1
- Date: Thu, 30 May 2024 20:10:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 18:14:59.027407
- Title: Online network topology shapes personal narratives and hashtag generation
- Title(参考訳): オンラインネットワークトポロジーが個人物語とハッシュタグ生成を形作る
- Authors: J. Hunter Priniski, Bryce Linford, Sai Krishna, Fred Morstatter, Jeff Brantingham, Hongjing Lu,
- Abstract要約: 個人のネットワーク化されたグループは、政治、科学、道徳に関する集合的な議論の中心となる物語を直接貢献し、運営することができます。
本研究では,災害イベントのテキストベースの物語を参加者のネットワークで解釈し,近隣のネットワークと一致するハッシュタグを生成するためのインセンティブを得た,物語とハッシュタグ生成に関するオンラインネットワーク実験の結果を報告する。
- 参考スコア(独自算出の注目度): 6.563352124013039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While narratives have shaped cognition and cultures for centuries, digital media and online social networks have introduced new narrative phenomena. With increased narrative agency, networked groups of individuals can directly contribute and steer narratives that center our collective discussions of politics, science, and morality. We report the results of an online network experiment on narrative and hashtag generation, in which networked groups of participants interpreted a text-based narrative of a disaster event, and were incentivized to produce matching hashtags with their network neighbors. We found that network structure not only influences the emergence of dominant beliefs through coordination with network neighbors, but also impacts participants' use of causal language in their personal narratives.
- Abstract(参考訳): 物語は数世紀にわたって認知と文化を形成してきたが、デジタルメディアとオンラインソーシャルネットワークは新しい物語現象を導入した。
物語代理店の増加により、個人のネットワーク化されたグループが直接貢献し、政治、科学、道徳に関する総合的な議論の中心となる物語を運営できる。
本研究では,災害イベントのテキストベースの物語を参加者のネットワークで解釈し,近隣のネットワークと一致するハッシュタグを生成するためのインセンティブを得た,物語とハッシュタグ生成に関するオンラインネットワーク実験の結果を報告する。
ネットワーク構造は,ネットワーク隣人との連携を通じて支配的信念の出現に影響を与えるだけでなく,参加者の個人的物語における因果語の使用にも影響を及ぼすことがわかった。
関連論文リスト
- Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks [45.58331196717468]
本研究では,ソーシャルメディアプラットフォームにおけるオンラインコミュニティの動態を解析するための枠組みを提案する。
テキスト分類と動的ソーシャルネットワーク分析を組み合わせることで,コミュニティの形成と進化を促進するメカニズムを明らかにする。
論文 参考訳(メタデータ) (2024-09-18T03:03:02Z) - Echo-chambers and Idea Labs: Communication Styles on Twitter [51.13560635563004]
本稿では,ワクチン接種状況におけるTwitter(X)コミュニティのコミュニケーション形態と構造について検討する。
本研究は,ソーシャルネットワークにおけるコミュニケーションの微妙な性質に光を当てることによって,オンラインコミュニティにおける視点の多様性を理解することの重要性を強調する。
論文 参考訳(メタデータ) (2024-03-28T13:55:51Z) - Digital cloning of online social networks for language-sensitive
agent-based modeling of misinformation spread [0.0]
オンラインソーシャルネットワーク内で拡散する誤情報を研究するためのシミュレーションフレームワークを開発する。
我々は、ソーシャルメディア履歴を1万人以上のユーザー向けにダウンロードすることで、既知の偽情報共有ネットワークの「デジタルクローン」を作成する。
論文 参考訳(メタデータ) (2024-01-23T06:02:03Z) - Disinformation Echo-Chambers on Facebook [0.27195102129095]
この章では、Facebookグループ内の協調的不正確な振る舞いを特定するために設計された計算手法を紹介する。
この方法は、投稿、URL、画像の分析に焦点を当て、一部のFacebookグループが組織されたキャンペーンに従事していることを明らかにした。
これらのグループは同一のコンテンツを同時に共有し、ユーザーが嘘や誤解を招く物語を繰り返し遭遇することを露呈する可能性がある。
論文 参考訳(メタデータ) (2023-09-14T14:33:16Z) - Discovering collective narratives shifts in online discussions [3.6231158294409482]
本稿では,変化点検出,意味的役割ラベリング(SRL),物語の断片を物語ネットワークに自動集約することで,ギャップを埋める体系的な物語発見フレームワークを提案する。
我々は、新型コロナウイルスと2017年のフランス大統領選に関する2つのTwitterコーパスを合成および実証データで評価した。
以上の結果から,本手法は主要な出来事に対応する大きな物語シフトを回復できることが示された。
論文 参考訳(メタデータ) (2023-07-17T15:00:04Z) - TeKo: Text-Rich Graph Neural Networks with External Knowledge [75.91477450060808]
外部知識を用いた新しいテキストリッチグラフニューラルネットワーク(TeKo)を提案する。
まず、高品質なエンティティを組み込んだフレキシブルな異種セマンティックネットワークを提案する。
次に、構造化三重項と非構造化実体記述という2種類の外部知識を導入する。
論文 参考訳(メタデータ) (2022-06-15T02:33:10Z) - Fragments of the Past: Curating Peer Support with Perpetrators of
Domestic Violence [88.37416552778178]
我々は,過去フラグメントの設計と展開において,6人の支援労働者と18人の加害者とともに働いた10ヶ月の研究を報告した。
私たちは、暴力から脱却した経験をデジタルで強化された成果物、すなわち「フラグメント」を作ることが、メッセージのモチベーションと仲間間のラッピングをいかに翻訳するかを共有します。
これらの知見は、挑戦的な人口を持つ将来のネットワーク設計の実践的考察の基礎となる。
論文 参考訳(メタデータ) (2021-07-09T22:57:43Z) - A Survey on Computational Propaganda Detection [31.42480765785039]
プロパガンダのキャンペーンは、特定の議題を進めるために人々のマインドセットに影響を与えることを目的としている。
インターネットの匿名性、ソーシャルネットワークのマイクロプロファイリング能力、およびアカウントの協調ネットワークの自動作成と管理を容易にする。
論文 参考訳(メタデータ) (2020-07-15T22:25:51Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。