論文の概要: Class-Based Time Series Data Augmentation to Mitigate Extreme Class Imbalance for Solar Flare Prediction
- arxiv url: http://arxiv.org/abs/2405.20590v1
- Date: Fri, 31 May 2024 03:03:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 15:46:08.092176
- Title: Class-Based Time Series Data Augmentation to Mitigate Extreme Class Imbalance for Solar Flare Prediction
- Title(参考訳): 太陽フレア予測のためのクラスベース時系列データ拡張による極端クラス不均衡の軽減
- Authors: Junzhi Wen, Rafal A. Angryk,
- Abstract要約: 時系列データは、さまざまな領域において重要な役割を担い、意思決定と予測モデリングに価値がある。
機械学習(ML)とディープラーニング(DL)はこの点において有望だが、パフォーマンスはデータ品質と量に依存している。
データ拡張技術は、これらの課題に対処するための潜在的な解決策を提供するが、多変量時系列データセットに対するそれらの効果は、まだ探索されていない。
- 参考スコア(独自算出の注目度): 1.4272411349249625
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Time series data plays a crucial role across various domains, making it valuable for decision-making and predictive modeling. Machine learning (ML) and deep learning (DL) have shown promise in this regard, yet their performance hinges on data quality and quantity, often constrained by data scarcity and class imbalance, particularly for rare events like solar flares. Data augmentation techniques offer a potential solution to address these challenges, yet their effectiveness on multivariate time series datasets remains underexplored. In this study, we propose a novel data augmentation method for time series data named Mean Gaussian Noise (MGN). We investigate the performance of MGN compared to eight existing basic data augmentation methods on a multivariate time series dataset for solar flare prediction, SWAN-SF, using a ML algorithm for time series data, TimeSeriesSVC. The results demonstrate the efficacy of MGN and highlight its potential for improving classification performance in scenarios with extremely imbalanced data. Our time complexity analysis shows that MGN also has a competitive computational cost compared to the investigated alternative methods.
- Abstract(参考訳): 時系列データは、さまざまな領域において重要な役割を担い、意思決定と予測モデリングに価値がある。
機械学習(ML)とディープラーニング(DL)は、この点において有望であることを示しているが、そのパフォーマンスはデータ品質と量に依存しており、データ不足とクラス不均衡によって制約されることが多い。
データ拡張技術は、これらの課題に対処するための潜在的な解決策を提供するが、多変量時系列データセットに対するそれらの効果は、まだ探索されていない。
本研究では,MGN(Mean Gaussian Noise)と呼ばれる時系列データに対する新しいデータ拡張手法を提案する。
太陽フレア予測のための多変量時系列データセットであるSWAN-SFにおいて、時系列データのためのMLアルゴリズムであるTimeSeriesSVCを用いて、MGNの性能を既存の8つの基本データ拡張法と比較した。
その結果、MGNの有効性を実証し、極めて不均衡なデータを持つシナリオにおける分類性能の向上の可能性を強調した。
我々の時間複雑性分析は、MGNが研究された代替手法と比較して競争力のある計算コストを持つことを示している。
関連論文リスト
- Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
大規模言語モデル (LLM) は時系列解析に広く応用されている。
しかし、数発の分類(すなわち重要な訓練シナリオ)におけるそれらの実用性は過小評価されている。
データ不足を克服するために,LLMの学習済み知識を幅広く活用することを目的としている。
論文 参考訳(メタデータ) (2025-01-30T03:59:59Z) - Tailored Forecasting from Short Time Series via Meta-learning [0.0]
関連時間系列(METAFORS)からのタイラート予測のためのメタラーニングについて紹介する。
関連するシステムでトレーニングされたモデルのライブラリを活用することで、METAFORSは限られたデータでシステムの進化を予測するために、カスタマイズされたモデルを構築する。
MeTAFORSの短期動態と長期統計の両方を予測する能力を示す。
論文 参考訳(メタデータ) (2025-01-27T18:58:04Z) - Are Large Language Models Useful for Time Series Data Analysis? [3.44393516559102]
時系列データは、医療、エネルギー、金融といった様々な分野において重要な役割を果たす。
本研究では,大規模言語モデル(LLM)が時系列データ解析に有効かどうかを検討する。
論文 参考訳(メタデータ) (2024-12-16T02:47:44Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Contrastive Representation Learning for Predicting Solar Flares from Extremely Imbalanced Multivariate Time Series Data [1.024113475677323]
太陽フレアは太陽の磁束の急激な急上昇であり、技術基盤に大きなリスクをもたらす。
本稿では,多変量時系列データに対する新しいコントラクティブ表現学習手法であるConTREXを紹介する。
提案手法は, 太陽フレア (SWAN-SF) 多変量時系列ベンチマークデータセットにおいて, 有望な太陽フレア予測結果を示すものである。
論文 参考訳(メタデータ) (2024-10-01T01:20:47Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - Towards Synthetic Multivariate Time Series Generation for Flare
Forecasting [5.098461305284216]
データ駆動・レアイベント予測アルゴリズムのトレーニングにおける制限要因の1つは、関心のあるイベントの不足である。
本研究では,データインフォームド・オーバーサンプリングを行う手段として,条件付き生成逆数ネットワーク(CGAN)の有用性を検討する。
論文 参考訳(メタデータ) (2021-05-16T22:23:23Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。