論文の概要: UniBias: Unveiling and Mitigating LLM Bias through Internal Attention and FFN Manipulation
- arxiv url: http://arxiv.org/abs/2405.20612v2
- Date: Thu, 12 Dec 2024 10:46:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:10.292695
- Title: UniBias: Unveiling and Mitigating LLM Bias through Internal Attention and FFN Manipulation
- Title(参考訳): UniBias:内部の注意とFFN操作によるLDMバイアスの発見と緩和
- Authors: Hanzhang Zhou, Zijian Feng, Zixiao Zhu, Junlang Qian, Kezhi Mao,
- Abstract要約: フィードフォワードニューラルネットワーク(FFN)とアテンションヘッドが大規模言語モデル(LLM)のバイアスをもたらすかを検討する。
これらのバイアスを軽減するために,推定のみの手法であるUniBiasを導入し,バイアス付きFFNベクトルとアテンションヘッドを効果的に識別・除去する。
- 参考スコア(独自算出の注目度): 12.04811490937078
- License:
- Abstract: Large language models (LLMs) have demonstrated impressive capabilities in various tasks using the in-context learning (ICL) paradigm. However, their effectiveness is often compromised by inherent bias, leading to prompt brittleness, i.e., sensitivity to design settings such as example selection, order, and prompt formatting. Previous studies have addressed LLM bias through external adjustment of model outputs, but the internal mechanisms that lead to such bias remain unexplored. Our work delves into these mechanisms, particularly investigating how feedforward neural networks (FFNs) and attention heads result in the bias of LLMs. By Interpreting the contribution of individual FFN vectors and attention heads, we identify the biased LLM components that skew LLMs' prediction toward specific labels. To mitigate these biases, we introduce UniBias, an inference-only method that effectively identifies and eliminates biased FFN vectors and attention heads. Extensive experiments across 12 NLP datasets demonstrate that UniBias significantly enhances ICL performance and alleviates prompt brittleness of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、コンテキスト内学習(ICL)パラダイムを用いて、様々なタスクにおいて印象的な能力を示す。
しかしながら、それらの効果はしばしば固有のバイアスによって損なわれ、即ち脆さ、すなわち、例の選択、順序、即時フォーマッティングといったデザイン設定に対する感受性をもたらす。
これまでの研究では、モデル出力の外部調整を通じてLCMバイアスに対処してきたが、そのようなバイアスを引き起こす内部メカニズムは未解明のままである。
我々の研究はこれらのメカニズムを掘り下げ、特にフィードフォワードニューラルネットワーク(FFN)とアテンションヘッドがどのようにLCMのバイアスをもたらすかを調べる。
個々のFFNベクトルとアテンションヘッドの寄与を解釈することにより、特定のラベルに対するLLMの予測を歪ませる偏りのあるLLM成分を同定する。
これらのバイアスを軽減するために,推定のみの手法であるUniBiasを導入し,バイアス付きFFNベクトルとアテンションヘッドを効果的に識別・除去する。
12個のNLPデータセットにわたる大規模な実験により、UniBiasはICLの性能を大幅に向上し、LLMの脆さを緩和することが示された。
関連論文リスト
- Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - Anchoring Bias in Large Language Models: An Experimental Study [5.229564709919574]
GPT-4やGeminiのような大規模言語モデル(LLM)は、非常に高度な人工知能を持っている。
この研究は、初期情報が判断に不均衡に影響を及ぼす認知バイアスであるアンカーリングバイアスを論じる。
論文 参考訳(メタデータ) (2024-12-09T15:45:03Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
大規模言語モデル(LLM)は、社会的バイアスを継承し増幅する傾向がある。
LLMバイアスは、不公平な慣行をもたらし、社会的不平等を悪化させる。
論文 参考訳(メタデータ) (2024-08-20T23:54:26Z) - Steering LLMs Towards Unbiased Responses: A Causality-Guided Debiasing
Framework [20.753141804841]
大規模言語モデル(LLM)はバイアスや差別的な応答を容易に生成できる。
本稿では,人口統計情報とLCMのアウトプットの関連性に着目し,社会的偏見に着目した。
論文 参考訳(メタデータ) (2024-03-13T17:46:28Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
大規模言語モデル(LLM)のバイアスを効果的に軽減するために,正面調整に基づく新たな因果的プロンプト手法を提案する。
実験結果から,提案手法は7つの自然言語処理データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-05T07:47:34Z) - Self-Supervised Position Debiasing for Large Language Models [39.261233221850155]
大規模言語モデル(LLM)における位置バイアスを軽減するための自己教師型位置偏差検出(SOD)フレームワークを提案する。
8つのデータセットと5つのタスクの実験により、SODは3つのタイプの位置バイアスを緩和する既存の手法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-01-02T14:12:41Z) - On the Relation between Internal Language Model and Sequence Discriminative Training for Neural Transducers [52.88268942796418]
内部言語モデル(ILM)のサブトラクションは、RNN-Transducerの性能向上に広く応用されている。
列識別訓練は, 理論的, 経験的両面からILMサブトラクションと強く相関していることを示す。
論文 参考訳(メタデータ) (2023-09-25T13:35:28Z) - An Empirical Study of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning [70.48605869773814]
カタストロフィック・ナッシング(英: Catastrophic forgetting、CF)は、機械学習において、モデルが以前に学習した情報を忘れたときに発生する現象である。
本研究では,大規模言語モデルにおける連続的調律時の忘れ現象を実験的に評価する。
論文 参考訳(メタデータ) (2023-08-17T02:53:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。