論文の概要: Prompt Framework for Role-playing: Generation and Evaluation
- arxiv url: http://arxiv.org/abs/2406.00627v1
- Date: Sun, 2 Jun 2024 06:09:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 04:06:06.998828
- Title: Prompt Framework for Role-playing: Generation and Evaluation
- Title(参考訳): Prompt Framework for Role-playing: Generation and Evaluation
- Authors: Xun Liu, Zhengwei Ni,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語の生成、ユーザ・インストラクションの理解、人間の言語使用の模倣において顕著な能力を示した。
本稿では,SOTA(State-of-the-art LLM)を利用して,ロールプレイング対話データセットを構築し,ロールプレイング性能を評価するフレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.2845546753303867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLM) have demonstrated remarkable abilities in generating natural language, understanding user instruction, and mimicking human language use. These capabilities have garnered considerable interest in applications such as role-playing. However, the process of collecting individual role scripts (or profiles) data and manually evaluating the performance can be costly. We introduce a framework that uses prompts to leverage the state-of-the-art (SOTA) LLMs to construct role-playing dialogue datasets and evaluate the role-playing performance. Additionally, we employ recall-oriented evaluation Rouge-L metric to support the result of the LLM evaluator.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語の生成、ユーザ指導の理解、および人間の言語使用の模倣において顕著な能力を示した。
これらの機能はロールプレイングのようなアプリケーションにかなりの関心を寄せている。
しかし、個々のロールスクリプト(またはプロファイル)データを収集し、手動でパフォーマンスを評価するプロセスはコストがかかる。
本稿では,SOTA(State-of-the-art LLM)を利用して,ロールプレイング対話データセットを構築し,ロールプレイング性能を評価するフレームワークを提案する。
さらに、LLM評価器の結果を支援するために、リコール指向評価ルージュ-Lメトリクスを用いる。
関連論文リスト
- Towards More Effective Table-to-Text Generation: Assessing In-Context Learning and Self-Evaluation with Open-Source Models [0.0]
本研究では,ベンチマークデータセット間の言語モデル(LM)における様々なコンテキスト内学習戦略の有効性について検討する。
我々は、チェーンオブ思考推論を用いた大規模言語モデル(LLM)の自己評価アプローチを採用し、BERTScoreのような人力対応メトリクスとの相関性を評価する。
本研究はテーブル・ツー・テキスト・ジェネレーションの改善における実例の顕著な影響を浮き彫りにし, LLM の自己評価には可能性があるが, 人間の判断と現在の整合性は向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-15T09:19:42Z) - ERABAL: Enhancing Role-Playing Agents through Boundary-Aware Learning [17.5855800570993]
ヒューマン・コンピュータ・インタラクション(HCI)分野におけるロールプレイング
大幅な進歩にもかかわらず、ロールプレイングエージェント(RPLA)は、会話間のロール一貫性を維持するのに依然として苦労している。
境界認識学習によるロールプレイング能力向上を目的としたフレームワークであるERABALを提案する。
論文 参考訳(メタデータ) (2024-09-23T05:12:13Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - Evaluation of Instruction-Following Ability for Large Language Models on Story-Ending Generation [2.4889060833127665]
本稿では,大規模言語モデル(LLM)の物語生成の文脈における指示追従能力の評価に焦点をあてる。
本稿では,機械読影理解モデル(MRC)を用いた自動評価パイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-24T06:53:36Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - Large Language Models are Superpositions of All Characters: Attaining
Arbitrary Role-play via Self-Alignment [62.898963074989766]
本稿では,ロールプレイのための自己アライメント手法であるDittoを紹介する。
この方法は4000文字からなるロールプレイトレーニングセットを生成し、現在利用可能なデータセットのスケールを10倍に超える。
本稿では,ロールプレイ領域におけるクロススーパービジョンアライメント実験について紹介する。
論文 参考訳(メタデータ) (2024-01-23T03:56:22Z) - RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models [107.00832724504752]
大規模言語モデル(LLM)におけるロールプレイング能力をベンチマークし、評価し、拡張するフレームワークであるRoleLLMを紹介する。
Context-InstructとRoleGPTによって、168,093サンプルでロールプレイする最初の体系的できめ細かい文字レベルのベンチマークデータセットであるRoleBenchを作成します。
論文 参考訳(メタデータ) (2023-10-01T17:52:59Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
本稿では,テキスト内学習を用いた多次元評価器として,大規模言語モデルの有効性について検討する。
実験の結果,テキスト要約作業において,文脈内学習に基づく評価手法が学習評価フレームワークと競合していることが判明した。
次に、テキスト内サンプルの選択や数などの要因がパフォーマンスに与える影響を分析する。
論文 参考訳(メタデータ) (2023-06-01T23:27:49Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。